分析 (1)求導(dǎo)數(shù),利用曲線y=f(x)在x=1處的切線與直線x+2y-1=0平行,求出a,可得切點(diǎn)坐標(biāo),即可求此切線方程;
(2)分類討論,求導(dǎo)數(shù),利用極值的定義,可得函數(shù)g(x)在定義域內(nèi)的極值點(diǎn).
解答 解:(1)由題意知:f′(x)=-$\frac{a}{{x}^{2}}$+1+$\frac{1}{x}$,
∴k=f′(1)=-a+2=-$\frac{1}{2}$,
∴a=$\frac{5}{2}$,切點(diǎn)為(1,$\frac{7}{2}$),
∴此切線方程為y-$\frac{7}{2}$=-$\frac{1}{2}$(x-1),
即x+2y-8=0.
(2)當(dāng)a=0時(shí),g(x)=x+lnx-$\frac{1}{2b}$x2-x=lnx-$\frac{1}{2b}$x2,定義域?yàn)閤∈(0,+∞),
∴g′(x)=$\frac{1}{x}$-$\frac{x}$=$\frac{b{-x}^{2}}{bx}$,
①當(dāng)b<0時(shí),∴g′(x)>0恒成立,
∴g(x)在x∈(0,+∞)上為增函數(shù),
∴g(x)在定義域內(nèi)無極值;
②當(dāng)b>0時(shí),令g′(x)=0,∴x=$\sqrt$或x=-$\sqrt$(舍去),
x | (0,$\sqrt$) | $\sqrt$ | ($\sqrt$,+∞) |
g′(x) | + | 0 | - |
g(x) | ↑ | 極大值 | ↓ |
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的極值,考查恒成立問題,考查學(xué)生分析解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-2,2\sqrt{5}]$ | B. | [-2,0] | C. | $[-2\sqrt{5},2]$ | D. | $[\frac{{2\sqrt{5}}}{5},1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 為定值8 | B. | 為定值4 | C. | 為定值2 | D. | 不是定值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com