5.在平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2,已知點(diǎn)A(-2,0),B(2,0),則(|PA|-|PB|)2( 。
A.為定值8B.為定值4C.為定值2D.不是定值

分析 可畫出圖形,并設(shè)P(x,y),Q(x,-y),從而由$\overrightarrow{OP}•\overrightarrow{OQ}=2$可得到y(tǒng)2=x2-2,進(jìn)而得出$x≥\sqrt{2},或x≤-\sqrt{2}$,從而求出$|\overrightarrow{PA}|=\sqrt{2}|x+1|,|\overrightarrow{PB}|=\sqrt{2}|x-1|$,這樣便可得到$|\overrightarrow{PA}|-|\overrightarrow{PB}|=\left\{\begin{array}{l}{2\sqrt{2}}&{x≥\sqrt{2}}\\{-2\sqrt{2}}&{x≤-\sqrt{2}}\end{array}\right.$,這樣便可得出正確選項(xiàng).

解答 解:如圖,設(shè)P(x,y),Q(x,-y),則:
$\overrightarrow{OP}•\overrightarrow{OQ}={x}^{2}-{y}^{2}=2$;
∴y2=x2-2,$x≥\sqrt{2}$,或$x≤-\sqrt{2}$;
∴$|\overrightarrow{PA}|=\sqrt{(x+2)^{2}+{y}^{2}}$=$\sqrt{(x+2)^{2}+{x}^{2}-2}$=$\sqrt{2}|x+1|$,$|\overrightarrow{PB}|=\sqrt{(x-2)^{2}+{x}^{2}-2}=\sqrt{2}|x-1|$;
∴$|\overrightarrow{PA}|-|\overrightarrow{PB}|=\sqrt{2}(|x+1|-|x-1|)$=$\left\{\begin{array}{l}{2\sqrt{2}}&{x≥\sqrt{2}}\\{-2\sqrt{2}}&{x≤-\sqrt{2}}\end{array}\right.$;
∴$(|\overrightarrow{PA}|-|\overrightarrow{PB}|)^{2}$=8.
故選A.

點(diǎn)評(píng) 考查設(shè)出點(diǎn)的坐標(biāo)解決問題的方法,向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)點(diǎn)的坐標(biāo)求向量的坐標(biāo),以及求向量的長度,絕對(duì)值的處理方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式$\frac{(x-1)(x-2)}{{\sqrt{x-1}}}≥0$的解集為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中PM2.5指數(shù)的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:
PM2.5[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)413183091115
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為S(單位:元),PM2.5指數(shù)為x.當(dāng)x在區(qū)間[0,100]內(nèi)時(shí)對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)x在區(qū)間(100,300]內(nèi)時(shí)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)PM2.5指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)PM2.5指數(shù)為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)PM2.5指數(shù)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.
(1)試寫出S(x)的表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.322.072.703.745.026.637.8710.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
非重度污染重度污染合計(jì)
供暖季22830
非供暖季63770
合計(jì)8515100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線l1:y=kx-1與直線l2:x+y-1=0的交點(diǎn)位于第一象限的充要條件是k>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是( 。
A.(0,$\frac{5}{12}$]B.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$)C.(0,$\frac{5}{6}$]D.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a}{x}$+x+lnx,a∈R.
(1)設(shè)曲線y=f(x)在x=1處的切線與直線x+2y-1=0平行,求此切線方程;
(2)當(dāng)a=0時(shí),令函數(shù)g(x)=f(x)-$\frac{1}{2b}$x2-x(b∈R且b≠0),求函數(shù)g(x)在定義域內(nèi)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若物體的運(yùn)動(dòng)方程是s=t3+t2-1,t=3時(shí)物體的瞬時(shí)速度是( 。
A.27B.31C.39D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x+1}{x-1}(a>0,且a>0,且a≠1)$
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)若對(duì)于x∈[2,4],恒有$f(x)>{log_a}\frac{m}{(x-1)(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),直線PP′過坐標(biāo)原點(diǎn)O,與橢圓C分別交于點(diǎn)P,P′兩點(diǎn),且|PF|=1,|P′F|=3,橢圓C的離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l過橢圓C的右焦點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),若∠AOB是鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案