分析 利用正弦定理、和差公式、三角形面積計(jì)算公式即可得出.
解答 解:∵2R=$\frac{c}{sinC}$=2,則$a=2RsinA=2×\frac{4}{5}=\frac{8}{5}$,
又sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{4}{5}×\frac{{\sqrt{3}}}{2}+({-\frac{3}{5}})×\frac{1}{2}=\frac{{4\sqrt{3}-3}}{10}$,
∴$S=\frac{1}{2}acsinB=\frac{1}{2}×\frac{8}{5}×1×\frac{{4\sqrt{3}-3}}{10}=\frac{{8\sqrt{3}-6}}{25}$.
故答案為:$\frac{8\sqrt{3}-6}{25}$.
點(diǎn)評 本題考查了正弦定理、和差公式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{36}+\frac{y^2}{11}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{11}=1$ | ||
C. | $\frac{x^2}{36}+\frac{y^2}{11}=1({y≠0})$ | D. | $\frac{x^2}{9}+\frac{y^2}{16}=1({y≠0})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∧q為假命題,則p、q均為假命題 | |
B. | 命題“若x2=1,則x=1”為真命題 | |
C. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
D. | 命題“存在一個(gè)實(shí)數(shù)x,使不等式x2-3x+6<0成立”為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在過點(diǎn)P的直線與雙曲線相切 | |
B. | 不存在過點(diǎn)P的直線與雙曲線相切 | |
C. | 至少存在一條過點(diǎn)P的直線與該雙曲線沒有交點(diǎn) | |
D. | 存在唯一過點(diǎn)P的直線與該雙曲線沒有交點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=11x | B. | y2=-11x | C. | y2=22x | D. | y2=-22x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com