19.不等式|x-4|≤3的整數(shù)解的個數(shù)是( 。
A.4B.5C.6D.7

分析 求出不等式的解集,從而求出不等式的整數(shù)解即可.

解答 解:∵|x-4|≤3,
∴-3≤x-4≤3,
∴1≤x≤7,
故不等式的整數(shù)解是7個,
故選:D.

點評 本題考查了解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ex-x-2,k為整數(shù),且當x>0時,(x-k)f′(x)+x+1>0恒成立,則k的最大值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.直線x+2y=m(m>0)與⊙O:x2+y2=5交于A,B兩點,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|>2|{\overrightarrow{AB}}|$,則m的取值范圍為(2$\sqrt{5}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函數(shù)f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)的定義域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a為小于0的常數(shù))設(shè)x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,則a的范圍是(-∞,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求不等式f(x)≤6的解集;
(2)若a,b,c均為正實數(shù),且滿足a+b+c=f(x)min,求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且(4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=2x+1,則$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將函數(shù)的圖象y=cos2x向左平移$\frac{π}{4}$個單位后,得到函數(shù)y=g(x) 的圖象,則y=g(x)的圖象關(guān)于點($\frac{kπ}{2}$,0),k∈Z對稱(填坐標)

查看答案和解析>>

同步練習(xí)冊答案