8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}是單調(diào)遞增數(shù)列,且滿(mǎn)足a5≤6,S3≥9,則a6的取值范圍是(3,7].

分析 數(shù)列{an}是單調(diào)遞增數(shù)列,可得d>0.根據(jù)滿(mǎn)足a5≤6,S3≥9,可得a1+4d≤6,3a1+3d≥9,即-a1-d≤-3,0<d≤1,a2≥3.即可得出.

解答 解:∵數(shù)列{an}是單調(diào)遞增數(shù)列,∴d>0.
∵滿(mǎn)足a5≤6,S3≥9,∴a1+4d≤6,3a1+3d≥9,即-a1-d≤-3,
相加可得3d≤3,即d≤1,又d>0,∴0<d≤1,
-a1-d≤-3,∴a1≥3-d,∴a2≥3.
∴a6=a1+5d=$\frac{4}{3}$(a1+4d)+$\frac{1}{3}$(-a1-d)≤8-1=7,
a6=a2+4d>3.
可得:a6∈(3,7].
故答案為:(3,7].

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式與求和公式、不等式的性質(zhì)與解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知曲線C的極坐標(biāo)方程為${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),則3x+4y的最大值為$\sqrt{145}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.學(xué)校藝術(shù)節(jié)對(duì)A,B,C,D四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:甲說(shuō):“是C或D作品獲得一等獎(jiǎng)”;乙說(shuō):“B作品獲得一等獎(jiǎng)”;丙說(shuō):“A,D兩件作品未獲得一等獎(jiǎng)”;丁說(shuō):“是C作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式$-\sqrt{3}<tanx<2$的解集是( 。
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)P(x,y)滿(mǎn)足線性約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,點(diǎn)M(3,1),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OM}$•$\overrightarrow{OP}$的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=(x-a)e-x,其中a為常數(shù).
(1)判斷f(x)在x=0處的切線是否經(jīng)過(guò)一個(gè)定點(diǎn),并說(shuō)明理由;
(2)討論f(x)在區(qū)間[-2,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知圓C的圓心與拋物線y2=4x的焦點(diǎn)關(guān)于直線y=x對(duì)稱(chēng),直線4x-3y-2=0與圓C相交于A,B兩點(diǎn),且|AB|=6,則圓C的標(biāo)準(zhǔn)方程為x2+(y-1)2=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行.
(Ⅰ)求a的值及函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在極坐標(biāo)系中,設(shè)曲線ρ=-2sinθ和直線ρsinθ=-1交于A、B兩點(diǎn),則|AB|=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案