15.(1)解不等式$\frac{x+5}{{{{(x-1)}^2}}}>2$;
(2)若不等式kx2-2x+6k<0(k≠0)的解集為R,求k的取值范圍.

分析 (1)將原不等式化簡(jiǎn)變形可得2x2-5x-3<0,且x-1≠0,再由二次不等式的解法,即可得到所求解集;
(2)討論二次項(xiàng)的系數(shù)和判別式的符號(hào),結(jié)合二次函數(shù)的圖象和不等式的解法,計(jì)算即可得到所求范圍.

解答 解:(1)不等式$\frac{x+5}{{{{(x-1)}^2}}}>2$,
等價(jià)為$\frac{x+5}{(x-1)^{2}}$-2>0,
即為$\frac{2{x}^{2}-5x-3}{(x-1)^{2}}$<0,
可得2x2-5x-3<0,且x-1≠0,
解得-$\frac{1}{2}$<x<3且x≠1,
則原不等式的解集為{x|-$\frac{1}{2}$<x<3且x≠1};
(2)不等式kx2-2x+6k<0(k≠0)的解集為R,
當(dāng)k<0時(shí),判別式△<0,
即有4-24k2<0,即為k>$\frac{\sqrt{6}}{6}$或k<-$\frac{\sqrt{6}}{6}$,
則k<-$\frac{\sqrt{6}}{6}$,
當(dāng)k>0時(shí),原不等式的解集不為R.
綜上可得k的取值范圍為(-∞,-$\frac{\sqrt{6}}{6}$).

點(diǎn)評(píng) 本題考查分式不等式的解法,注意等價(jià)變形,考查二次不等式恒成立問(wèn)題的解法,注意討論二次項(xiàng)的系數(shù),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖是一個(gè)樣本的頻率分布直方圖,由圖形中的數(shù)據(jù)可以估計(jì)眾數(shù)是12.5,中位數(shù)是13,平均數(shù)13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2n+1}(n∈{N^+})$,則f(1)=( 。
A.1B.$\frac{1}{3}$C.$1+\frac{1}{2}+\frac{1}{3}$D.都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=4x3+ax2+bx+5的圖象在x=1處的切線方程為y=-12x.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a(a∈R,a為常數(shù)).
(1)求函數(shù)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)若x∈[0,$\frac{π}{2}$]時(shí),f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.要證明x<$\sqrt{y}$,只要證明不等式M,不等式M不可能是( 。
A.x2<yB.|x|<$\sqrt{y}$C.-x<$\sqrt{y}$D.x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.曲線y=ln(2x+1)上的點(diǎn)到直線2x-y+3=0的最短距離為$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)$\frac{(i-1)i}{2}$(i為虛數(shù)單位)的虛部是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=sin x的圖象經(jīng)過(guò)以下變換后得到y(tǒng)=f(x)的圖象:先向右平移 $\frac{π}{4}$; 然后縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍; 最后橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍;
(Ⅰ)寫出函數(shù)y=f(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)用“五點(diǎn)法”在給定的坐標(biāo)系中作出函數(shù)的一個(gè)周期的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案