19.在△ABC中,角A,B,C的對邊分別為a,b,c,若b=3,c=4,且△ABC的面積為3$\sqrt{3}$,則a=$\sqrt{13}$或$\sqrt{37}$.

分析 利用三角形面積計算公式與余弦定理即可得出.

解答 解:由三角形面積公式,得$\frac{1}{2}×3×4sinA$=3$\sqrt{3}$,∴sinA=$\frac{\sqrt{3}}{2}$,
∴cosA=$±\frac{1}{2}$,
∴a=$\sqrt{{3}^{2}+{4}^{2}-2×3×4×(±\frac{1}{2})}$,解得a=$\sqrt{13}$或$\sqrt{37}$.
故答案為:$\sqrt{13}$或$\sqrt{37}$.

點評 本題考查了三角形面積計算公式、余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC中,sin(A-B)=sinC-sinB,D是邊BC的一個三等分點(靠近點B),記$\frac{sin∠ABD}{sin∠BAD}=λ$,則當(dāng)λ取最大值時,tan∠ACD=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinα是方程5x2-7x-6=0的根,求:
(1)$\frac{cos(2π-α)cos(π+α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}+α)sin(2π-α)co{t}^{2}(π-α)}$的值.
(2)在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,AC=2,AB=3,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.學(xué)生體質(zhì)與學(xué)生飲食的科學(xué)性密切相關(guān),營養(yǎng)學(xué)家指出,高中學(xué)生良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.已知1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費28元;1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費21元.為了滿足高中學(xué)生日常飲食的營養(yǎng)要求,每天合理搭配食物A和食物B,則最低花費是16元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={x∈Z|x2+x-12<0},B={x|x<sin5π},則A∩B中元素的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y=tan({x-\frac{π}{3}})$的單調(diào)增區(qū)間為$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設(shè)有一個線性回歸方程$\stackrel{∧}{y}$=3-5x,變量x增加1個單位時,y平均增加5個單位;
③設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強;
④在一個2×2列聯(lián)表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大.
其中錯誤的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(Ⅰ)比較(x+1)(x-3)與(x+2)(x-4)的大。
(Ⅱ)一段長為36m的籬笆圍成一個矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大.最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案