分析 由cosA=$\frac{3}{5}$,A∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$.由正弦定理可得:$\frac{8}{\frac{4}{5}}$=$\frac{\frac{\sqrt{2}}{2}}$,可得b.再利用余弦定理即可得出.
解答 解:∵cosA=$\frac{3}{5}$,A∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$.
由正弦定理可得:$\frac{8}{\frac{4}{5}}$=$\frac{\frac{\sqrt{2}}{2}}$,可得b=5$\sqrt{2}$.
∴82=$(5\sqrt{2})^{2}$+c2-2c×$5\sqrt{2}$×$\frac{3}{5}$,化為:c2-$6\sqrt{2}$c-14=0,c>0,解得c=7$\sqrt{2}$.
故答案為:7$\sqrt{2}$.
點評 本題考查了正弦定理余弦定理、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1) | B. | (1,-1) | C. | (-1,1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,使得x02-x0+2=0 | |
B. | 命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0” | |
C. | ?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù) | |
D. | 在△ABC中,“A=B”是“sinA=sinB”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{21}{25}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com