15.函數(shù)f(x)=$\frac{lnx+2}{x}$+a(x-1)-2.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)若對(duì)任意x∈(0,1)∪(1,+∞),不等式$\frac{f(x)}{1-x}$<$\frac{a}{x}$恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的極值的關(guān)系即可求出,
(2)原不等式等價(jià)于$\frac{f(x)}{x-1}$+$\frac{a}{x}$>0,即$\frac{xf(x)+a(x-1)}{x-1}$>0,構(gòu)造函數(shù)g(x)=lnx+a(x2-1)-2(x-1),根據(jù)導(dǎo)數(shù)和函數(shù)的最值得關(guān)系,分類討論即可證明

解答 解:(1)當(dāng)a=0時(shí),f(x)=$\frac{lnx+2}{x}$-2.x>0,
∴f′(x)=$\frac{-1-lnx}{{x}^{2}}$
令f′(x)=0,解得x=$\frac{1}{e}$,
當(dāng)f′(x)>0時(shí),即0<x<$\frac{1}{e}$,函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時(shí),即x>$\frac{1}{e}$,函數(shù)單調(diào)遞減,
∴當(dāng)x=$\frac{1}{e}$時(shí),函數(shù)f(x)有極大值,極大值為f($\frac{1}{e}$)=e-2,無(wú)極小值;
(2)原不等式等價(jià)于$\frac{f(x)}{x-1}$+$\frac{a}{x}$>0,即$\frac{xf(x)+a(x-1)}{x-1}$>0,
∴$\frac{1}{x-1}$[lnx+a(x2-1)-2(x-1)]>0,
令g(x)=lnx+a(x2-1)-2(x-1),g(1)=0,
∴g′(x)=$\frac{1}{x}$+2ax-2=$\frac{2a{x}^{2}-2x+1}{x}$,
∵$\frac{1}{x-1}$[lnx+a(x2-1)-2(x-1)]>0,
g(2)=ln2+3a-2>0⇒a>$\frac{2-ln2}{3}$>0,
①當(dāng)a≥$\frac{1}{2}$時(shí),2ax2-2x+1≥x2-2x+1≥(x-1)2>0,
∴g′(x)>0,
∴g(x)在(0,+∞)上單調(diào)遞增,
∴x∈(0,1),g(x)<0,x∈(1,+∞),g(x)>0,
∴$\frac{1}{x-1}$g(x)>0,
②當(dāng)0<a<$\frac{1}{2}$時(shí),令2ax2-2x+1=0,解得x=$\frac{1+\sqrt{1-a}}{2a}$>1,
∴x∈(1,$\frac{1+\sqrt{1-a}}{2a}$)時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減,
∴g(x)<g(1)=0,
∴$\frac{1}{x-1}$g(x)<0,不合題意,舍去,
綜上所述a≥$\frac{1}{2}$

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,極值,零點(diǎn)的基礎(chǔ)知識(shí),考查學(xué)生運(yùn)算求解與推理論證的能力,運(yùn)用導(dǎo)數(shù)工具解決函數(shù)與方程,不等式綜合問(wèn)題的能力,考查了數(shù)形結(jié)合,分類與整合,轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,焦距為2.
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,動(dòng)直線l:y=k1x-$\frac{\sqrt{3}}{2}$交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2,且k1k2=$\frac{\sqrt{2}}{4}$,M是線段OC延長(zhǎng)線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.
(1)求f(-3),f($\frac{2}{3}$),f(f(-3))的值;
(2)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.線段AB長(zhǎng)為60cm,現(xiàn)從該線段隨機(jī)取兩點(diǎn),則兩點(diǎn)距離小于15cm的概率為$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知a=1,b=$\sqrt{3}$,A=30°,B為銳角,那么角A:B:C的比值為( 。
A.1:1:3B.1:2:3C.1:3:2D.1:4:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(sinx)=-2x+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],那么f(cos10)=7π-19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在R上的函數(shù)f(x)滿足f(x+3)=f(x).當(dāng)-3<x≤0時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(100)=-101.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓心為C的圓經(jīng)過(guò)A(1,1)和B(2,-2),且圓心C在直線L:x-y+1=0上,求圓心為C的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{5}}{3}$,右頂點(diǎn)A(3,0),直線l與x軸交于點(diǎn)A,與y軸交于點(diǎn)E.
(1)求橢圓C的方程;
(2)若直線l與橢圓C的另一交點(diǎn)為D,P為弦AD的中點(diǎn),是否存在著定點(diǎn)Q,使得OP⊥EQ恒成立?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)若OM∥l,交橢圓C于點(diǎn)M,在(2)的條件下,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案