分析 求出函數(shù)的導(dǎo)函數(shù),求出函數(shù)的最小值,根據(jù)函數(shù)的零點和最值關(guān)系即可得到結(jié)論.
解答 解:∵函數(shù)f(x)=xex+c的導(dǎo)函數(shù)f′(x)=(x+1)ex,
令f′(x)=0,則x=-1,
∵當(dāng)x∈(-∞,-1)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(-1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
故當(dāng)x=-1時,函數(shù)取最小值f(-1)=-e-1+c,
若函數(shù)f(x)=xex+c有兩個零點,
則f(-1)=-e-1+c<0,
即c<$\frac{1}{e}$,
又∵c≤0時,x∈(-∞,-1)時,f(x)=xex+c<0恒成立,不存在零點,
故c>0.
綜上0<c<$\frac{1}{e}$,
故答案為:(0,$\frac{1}{e}$).
點評 本題考查函數(shù)方程轉(zhuǎn)化問題的解法,其中熟練掌握函數(shù)零點與方程根之間的對應(yīng)關(guān)系是解答的關(guān)鍵,利用導(dǎo)數(shù)是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{π}{12},\frac{5π}{12}]$ | B. | $[\frac{π}{4},\frac{5π}{12}]$ | C. | $[\frac{π}{12},\frac{π}{2})$ | D. | $[\frac{π}{6},\frac{π}{4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com