4.已知函數(shù)f(x)=xex+c有兩個零點,則c的取值范圍是(0,$\frac{1}{e}$).

分析 求出函數(shù)的導(dǎo)函數(shù),求出函數(shù)的最小值,根據(jù)函數(shù)的零點和最值關(guān)系即可得到結(jié)論.

解答 解:∵函數(shù)f(x)=xex+c的導(dǎo)函數(shù)f′(x)=(x+1)ex,
令f′(x)=0,則x=-1,
∵當(dāng)x∈(-∞,-1)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(-1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
故當(dāng)x=-1時,函數(shù)取最小值f(-1)=-e-1+c,
若函數(shù)f(x)=xex+c有兩個零點,
則f(-1)=-e-1+c<0,
即c<$\frac{1}{e}$,
又∵c≤0時,x∈(-∞,-1)時,f(x)=xex+c<0恒成立,不存在零點,
故c>0.
綜上0<c<$\frac{1}{e}$,
故答案為:(0,$\frac{1}{e}$).

點評 本題考查函數(shù)方程轉(zhuǎn)化問題的解法,其中熟練掌握函數(shù)零點與方程根之間的對應(yīng)關(guān)系是解答的關(guān)鍵,利用導(dǎo)數(shù)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=log2x在[1,2]上的值域是( 。
A.RB.[0,+∞)C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在四棱錐S-ABCD中,AB∥CD,AB⊥AD,SA=AB=2CD=2,SB=2AD=2$\sqrt{2}$,平面SAB⊥平面ABCD,E為SB的中點
(1)求證:CE∥平面SAD;
(2)求證:BD⊥平面SAC;
(3)求直線CE與平面SAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a>0,則“關(guān)于x的方程ax=b解集為{x0}”的充要條件的序號是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:函數(shù)y=kx+1在R上是增函數(shù).命題q:?x∈R,x2+2kx+1=0.如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$kx2-2x+klnx(k∈R).
(1)當(dāng)k=$\frac{1}{2}$時,求函數(shù)f(x)在[$\frac{1}{2}$,4]上的最大值;
(2)若函數(shù)f(x)在區(qū)間($\frac{1}{2}$,4)上不單調(diào),求k的取值范圍;
(3)當(dāng)k=2時,設(shè)[a,b]⊆[1,2],其中a<b,試證明:函數(shù)φ(x)=f′(x)-$\frac{f(b)-f(a)}{b-a}$在區(qū)間(a,b)上有唯一的零點.(參考公式:若h(x)=f(g(x)),則h′(x)=f′(g(x))•g′(x))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在長方體ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小為$\frac{π}{6}$,若空間一條直線l與直線CC1所成的角為$\frac{π}{4}$
,則直線l與平面A1BD所成的角的取值范圍是( 。
A.$[\frac{π}{12},\frac{5π}{12}]$B.$[\frac{π}{4},\frac{5π}{12}]$C.$[\frac{π}{12},\frac{π}{2})$D.$[\frac{π}{6},\frac{π}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個底面直徑和高都是4的圓柱的側(cè)面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$f(x)=sinxcosx-\sqrt{3}{cos^2}x$的圖象可由函數(shù)$g(x)=sin(2x+\frac{π}{3})-\frac{{\sqrt{3}}}{2}$的圖象向右平移k(k>0)個單位得到,則k的最小值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案