14.已知集合P={a|不等式x2+ax+$\frac{1}{16}$≤0有解},集合Q={a|不等式ax2+4ax-4<0對(duì)任意實(shí)數(shù)x恒成立},求P∩Q.

分析 由集合P利用根的判別式求出$a≤-\frac{1}{2}$或$a≥\frac{1}{2}$,由集合Q,對(duì)a分類:當(dāng)a=0時(shí)恒成立;當(dāng)a<0時(shí),由得根的判別式求出-1<a<0,由此能求出P∩Q.

解答 解:$P=\{a|不等式{x^2}+ax+\frac{1}{16}≤0有解\}$,
故${△_1}={a^2}-\frac{1}{4}≥0$,解得$a≤-\frac{1}{2}$或$a≥\frac{1}{2}$,
集合Q={a|不等式ax2+4ax-4<0對(duì)任意實(shí)數(shù)x恒成立},對(duì)a分類:
當(dāng)a=0時(shí)恒成立;
當(dāng)a<0時(shí),${△_2}=16{a^2}+16a<0$,解得-1<a<0
綜合得:-1<a≤0
故$P∩Q=(-1,-\frac{1}{2}]$.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,注意交集性質(zhì)、根的判別式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù) f ( x )=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+2sin x cos x.
(Ⅰ)求函數(shù) f ( x) 圖象的對(duì)稱軸方程;
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 $\frac{π}{12}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的 4 倍,縱坐標(biāo)不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[$\frac{π}{3}$,2π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.關(guān)于曲線$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下結(jié)論:
①曲線C關(guān)于原點(diǎn)對(duì)稱;
②曲線C關(guān)于直線x±y=0對(duì)稱;
③曲線C是封閉圖形,且封閉圖形的面積大于2π;
④曲線C不是封閉圖形,且它與圓x2+y2=2無(wú)公共點(diǎn);
⑤曲線C與曲線$D:|x|+|y|=2\sqrt{2}$有4個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形.其中所有正確結(jié)論的序號(hào)為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的否命題是若a,b不都是奇數(shù),則a+b不是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知集合A={(x,y)|3x-y=7},集合B={(x,y)|2x+y=3},則A∩B={(2,-1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]時(shí)函數(shù)f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$對(duì)任意x∈(0,3]恒成立,求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知定義在R上的函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)為遞增函數(shù),若不等式f(1-m)<f(m)成立,則m的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若sinα=3cosα,則$\frac{sin2α}{{{{cos}^2}α}}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos2x,則f(x)的一個(gè)單調(diào)遞減區(qū)間是( 。
A.[$\frac{π}{12}$,$\frac{7π}{12}$]B.[-$\frac{5π}{12}$,$\frac{π}{12}$]C.[-$\frac{π}{3}$,$\frac{2π}{3}$]D.[-$\frac{π}{6}$,$\frac{5π}{6}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案