分析 由題意可得,在定義域內(nèi),函數(shù)f(x)不是單調(diào)的,考慮x≥1時,討論函數(shù)的單調(diào)性,即可求得結(jié)論.
解答 解:依題意,在定義域內(nèi),函數(shù)f(x)不是單調(diào)函數(shù),分情況討論:
①當(dāng)x≥1時,若f(x)=x2 -3ax 不是單調(diào)的,它的對稱軸為x=$\frac{3}{2}$a,則有$\frac{3}{2}$a>1,
解得a>$\frac{2}{3}$;
②當(dāng)x≥1時,若f(x)=x2 -3ax 是單調(diào)的,則f(x)單調(diào)遞增,此時$\frac{3}{2}$a≤1,即a≤$\frac{2}{3}$.
當(dāng)x<1時,由題意可得f(x)=ax+1-4a應(yīng)該不單調(diào)遞增,故有a≤0.
綜合得:a的取值范圍是($\frac{2}{3}$,+∞)∪(-∞,0].
故答案為:($\frac{2}{3}$,+∞)∪(-∞,0].
點(diǎn)評 本題考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若方程x2=m有實(shí)根,則m≥0 | B. | 若方程x2=m有實(shí)根,則m<0 | ||
C. | 若方程x2=m沒有實(shí)根,則m≥0 | D. | 若方程x2=m沒有實(shí)根,則m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | 8π | C. | 10π | D. | 11π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b?α,則a∥b | B. | 若a∥b,a⊥α,則b⊥α | C. | 若a∥b,a∥α,則b∥α | D. | 若a⊥b,a⊥α,則b∥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11π | B. | 20π | C. | 23π | D. | 35π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com