15.設(shè)集合A={x|x2-x-6>0},B={x|-3≤x≤1},則A∩B=( 。
A.(-2,1]B.(-3,-2]C.[-3,-2)D.(-∞,1]∪(3,+∞)

分析 化簡(jiǎn)集合A,再由集合的交集運(yùn)算即可得到所求.

解答 解:集合A={x|x2-x-6>0}=(-∞,-2)∪(3,+∞),
B={x|-3≤x≤1}=[-3,1],
則A∩B=[-3,-2).
故選:C.

點(diǎn)評(píng) 本題考查集合的交集運(yùn)算,同時(shí)考查二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)1-2i的虛部是( 。
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知Sn為各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和,a1∈(0,2),an2+3an+2=6Sn
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若對(duì)?n∈N*,t≤4Tn恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線l1、l2的方向向量分別為$\vec a=(1,-3,-1)$,$\vec b=(8,2,2)$,則( 。
A.l1⊥l2B.l1∥l2
C.l1與l2相交不平行D.l1與l2重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$y=\frac{2}{x}$,當(dāng)x由2變?yōu)?.5時(shí),函數(shù)的增量為( 。
A.1B.2C.$\frac{1}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的兩條漸進(jìn)線與拋物線y2=-8x的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若△ABO的面積為$4\sqrt{3}$,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{7}}}{2}$B.2C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=-\frac{1}{3}{x^3}+2a{x^2}-3{a^2}x$(a∈R且a≠0).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在(-2,f(-2))處的切線方程;
(2)當(dāng)a>0時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(3)當(dāng)x∈[2a,2a+2]時(shí),不等式|f'(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在兩坐標(biāo)軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=(  )
A.$\frac{7}{2}$B.7C.-$\frac{1}{2}$或$\frac{7}{2}$D.-1或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足下列三個(gè)條件
①對(duì)任意的x∈R,都有f(x+4)=f(x).
②對(duì)于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函數(shù)f(x+2)的圖象關(guān)于y軸對(duì)稱.則下列結(jié)論中,正確的是( 。
A.f(4.5)<f(6.5)<f(7)B.f(4.5)<f(7)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(7)<f(4.5)<f(6.5)

查看答案和解析>>

同步練習(xí)冊(cè)答案