7.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是$\frac{π}{8}$.

分析 將函數(shù)f(x)化簡后,根據(jù)平移變換的規(guī)律,得圖象關(guān)于y軸對稱,利用誘導(dǎo)公式可得答案.

解答 解:函數(shù)f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),向左平移φ個單位,可得$\sqrt{2}$sin(2x+2φ+$\frac{π}{4}$),
要使所得圖象關(guān)于y軸對稱,
∴2φ+$\frac{π}{4}$=$\frac{π}{2}+kπ$,即φ=$\frac{π}{8}+\frac{1}{2}kπ$,(k∈Z)
當(dāng)k=0時,可得φ的最小正值為$\frac{π}{8}$.
故答案為:$\frac{π}{8}$.

點評 函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求異面直線A1B與B1C所成角的余弦值..
(2)若點E、F分別是AB、A1B的中點,求證:EF∥平面BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}=5$,則a+b的取值范圍是(  )
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|.
(1)求不等式x•f(x)>f(x-2)的解集;
(2)若函數(shù)y=lg[f(x-3)+f(x)+a]的值域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2clnx-x2(c∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若c=1,設(shè)函數(shù)g(x)=f(x)-mx的圖象與x軸交于A(x1,0),B(x2,0)兩點,且0<x1<x2,又y=g'(x)是y=g(x)的導(dǎo)函數(shù),若正常數(shù)a,b滿足a+b=1,b≥a,證明:g'(ax1+bx2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機(jī)抽取n個進(jìn)行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:
 分組頻數(shù)  頻率
[39.95,39.97)P1 
[39.97,39.99) 12 0.20
[39.99,40.01) a 0.50
[40.01,40.03) b P2
 合計 n1.00 
(1)求a,b,n及p1,p2的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為40.00mm,且稱直徑在[39.99,40.01]內(nèi)的乒乓球為五星乒乓球,若這批乒乓球共有10000個,試估計其中五星乒乓球的數(shù)目.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某學(xué)校1800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組[13,14],第二組[14,15),第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績小于15秒認(rèn)為良好,求該樣本在這次百米測試中成績良好的人數(shù);
(2)請估計學(xué)校1800名學(xué)生中,成績屬于第四組的人數(shù);
(3)請根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.6本不同的書分成3組,一組4本,其余組各1本,共有不同的分法( 。
A.5種B.10種C.15種D.20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖長方體ABCD-A'B'C'D'中,AB=BC=1,AA'=2,E、F分別是BB′、A'B'的中點.
(1)求證:E、F、C、D'四點共面; 
(2)求異面直線AC、C'E夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案