15.已知函數(shù)f(x)=|x+1|.
(1)求不等式x•f(x)>f(x-2)的解集;
(2)若函數(shù)y=lg[f(x-3)+f(x)+a]的值域為R,求實數(shù)a的取值范圍.

分析 (1)由已知不等式x•f(x)>f(x-2),得x|x+1|>|x-1|,分類討論求不等式x•f(x)>f(x-2)的解集;
(2)若函數(shù)y=lg[f(x-3)+f(x)+a]的值域為R,只要g(x)=|x-2|+|x+1|+a能取到所有的正數(shù),所以只需g/(x)的最小值小于或等于0,即可求實數(shù)a的取值范圍.

解答 解:(1)由已知不等式x•f(x)>f(x-2),得x|x+1|>|x-1|,所以顯然x>0,
∴$\left\{\begin{array}{l}{0<x≤1}\\{{x}^{2}+2x-1>0}\end{array}\right.$ 或$\left\{\begin{array}{l}{x>1}\\{{x}^{2}>-1}\end{array}\right.$,
解得:$\sqrt{2}$-1<x≤1或x>1,所以不等式x•f(x)>f(x-2)的解集為($\sqrt{2}$-1,+∞). …(5分)
(2)要函數(shù)y=lg[f(x-3)+f(x)+a]的值域為R,
只要g(x)=|x-2|+|x+1|+a能取到所有的正數(shù),所以只需g/(x)的最小值小于或等于0,
又g(x)≥|x-2-x-1|+a=3+a,所以只需3+a≤0,即a≤-3,
所以實數(shù)a的取值范圍是a≤-3.

點評 本題考查不等式的解法,考查恒成立問題,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若關(guān)于x的方程x2-x-(m+1)=0在[-1,1]上有解,則m的取值范圍是[-$\frac{5}{4}$,1].(結(jié)果寫成區(qū)間形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示:
x4567
y8.27.86.65.4
若x,y之間的線性回歸方程為$\widehaty$=$\widehatb$x+12.28,則$\widehatb$的值為( 。
A.-0.92B.-0.94C.-0.96D.-0.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|2x-a|+|x+a|(a>0).
(1)當a=1時,求f(x)的最小值;
(2)若關(guān)于x的不等式$f(x)<\frac{5}{x}+a$在x∈[1,2]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù)a>0,b>0,且滿足2a+3b=6,則$\frac{2}{a}$+$\frac{3}$的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知三棱錐S-ABC的體積為$\frac{\sqrt{2}}{6}$,底面△ABC是邊長為1的正三角形,三棱錐S-ABC的所有頂點都在球O的球面上,棱SC是球O的直徑,則球O的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用一個平面去截一個四棱錐,截面形狀不可能的是( 。
A.四邊形B.三角形C.五邊形D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知y=a-bcos3x(b>0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$.
(1)求函數(shù)y=-4asin(3bx)的周期和最值及相應(yīng)的x的取值集合;
(2)求函數(shù)$f(x)=2sin(a\frac{π}{3}-2bx)$的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案