已知函數(shù)為常數(shù))在處取得極值,
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),的圖像恒在直線的下方,求實(shí)數(shù)的取值范圍.
(1) (2).
(1)由題意可知 是方程的兩個(gè)根.
(2)本題的實(shí)質(zhì)是,即恒成立,然后構(gòu)造函數(shù),求其在上的最大值即可
(1).由題設(shè)知,解得.所以.
(2)有題設(shè)知,即,設(shè)
,所以只要大于的最大值即可.,
當(dāng)時(shí),,所以,所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)滿足且對(duì)于任意, 恒有成立
(1)求實(shí)數(shù)的值;  (2)解不等式
(3)當(dāng)時(shí),函數(shù)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
(理)(1)證明不等式:
(2)已知函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(3)若關(guān)于x的不等式上恒成立,求實(shí)數(shù)的最大值.
(文)已知函數(shù)的導(dǎo)函數(shù)的圖象關(guān)于直線x=2對(duì)稱.
(Ⅰ)求b的值;
(Ⅱ)若處取得極小值,記此極小值為,求的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為正實(shí)數(shù),為自然數(shù),拋物線軸正半軸相交于點(diǎn),設(shè)為該拋物線在點(diǎn)處的切線在軸上的截距。
(1)用表示
(2)求對(duì)所有都有成立的的最小值;
(3)當(dāng)時(shí),比較的大小,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

、函數(shù)的單調(diào)遞增區(qū)間為_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),
(1)若的極值點(diǎn),求值;
(2)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案