14.已知函數(shù)f(x)=(m2-m-1)${x}^{{m}^{2}+m-3}$是冪函數(shù),對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,若a、b∈R,且a+b>0,ab<0,則f(a)+f(b)的值( 。
A.恒小于0B.恒大于0C.等于0D.無法判斷

分析 利用冪函數(shù)的定義求出m,利用函數(shù)的單調(diào)性求解即可.

解答 解:由已知函數(shù)f(x)=(m2-m-1)${x}^{{m}^{2}+m-3}$是冪函數(shù),可得m2-m-1=1,解得m=2或m=-1,
當(dāng)m=2時(shí),f(x)=x3;當(dāng)m=-1時(shí),f(x)=x-3
對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
函數(shù)是單調(diào)減函數(shù),∴m=-1,f(x)=x-3
a+b>0,ab<0,可知a,b異號(hào),且正數(shù)的絕對(duì)值大于負(fù)數(shù)的絕對(duì)值,
則f(a)+f(b)恒小于0.
故選:A.

點(diǎn)評(píng) 本題考查冪函數(shù)的性質(zhì)以及冪函數(shù)的定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績,列出如下所示2×2列聯(lián)表:
數(shù)學(xué)成績
物理成績
 優(yōu)秀不優(yōu)秀合計(jì)
優(yōu)秀527
不優(yōu)秀11213
合計(jì)61420
(1)根據(jù)題中表格的數(shù)據(jù)計(jì)算,你有多少的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
(2)若按下面的方法從這20人(序號(hào)1,2,3,…,20)中抽取1人來了解有關(guān)情況:將一個(gè)標(biāo)有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號(hào).
試求:①抽到12號(hào)的概率;②抽到“無效序號(hào)(序號(hào)大于20)”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.北京某高校在2016年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號(hào)分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)n0.350
第3組[170,175)30p
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.000
(1)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至多有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2016高考成績揭曉,漯河高中再創(chuàng)輝煌,考后學(xué)校對(duì)于單科成績逐個(gè)進(jìn)行分析:現(xiàn)對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)成績進(jìn)行分析,規(guī)定:大于等于135分為優(yōu)秀,135分以下為非優(yōu)秀,成績統(tǒng)計(jì)后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{11}$.
班級(jí)優(yōu)秀非優(yōu)秀合計(jì)
甲班18
乙班43
合計(jì)110
(1)請(qǐng)完成上面的列聯(lián)表
(2)請(qǐng)問:是否有75%的把握認(rèn)為“數(shù)學(xué)成績與所在的班級(jí)有關(guān)系”?
(3)用分層抽樣的方法從甲、乙兩個(gè)文科班的數(shù)學(xué)成績優(yōu)秀的學(xué)生中抽取5名學(xué)生進(jìn)行調(diào)研,然后再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行談話,求抽到的2名學(xué)生中至少有1名乙班學(xué)生的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
參考數(shù)據(jù):
P(K2≥k00.250.150.100.05
k01.3232.0722.7063.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,已知第10項(xiàng)等于17,前10項(xiàng)的和等于80.從該數(shù)列中依次取出第3項(xiàng)、第32項(xiàng)…第3n項(xiàng),并按原來的順序組成一個(gè)新數(shù)列{bn}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=px(p>0)與直線y=-x-1相切.
(1)求拋物線標(biāo)準(zhǔn)方程,及其準(zhǔn)線方程;
(2)若P、Q是拋物線上相異的兩點(diǎn),且P、Q的中點(diǎn)在直線x=1上,試證:線段PQ的垂直平分線恒過定點(diǎn)T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知過點(diǎn)($\sqrt{2}$,$\sqrt{5}$)的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{6}$,則該雙曲線的實(shí)軸長為( 。
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=1+i(i是虛數(shù)單位),則|${\frac{2}{z}$+z|=( 。
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

同步練習(xí)冊(cè)答案