6.已知過點($\sqrt{2}$,$\sqrt{5}$)的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{6}$,則該雙曲線的實軸長為(  )
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

分析 利用離心率公式,點($\sqrt{2}$,$\sqrt{5}$)代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,建立方程,即可求得雙曲線的實軸長.

解答 解:由題意,$\frac{2}{{a}^{2}}-\frac{5}{^{2}}$=1,$\frac{{a}^{2}+^{2}}{{a}^{2}}$=6,
∴a=1,b=$\sqrt{5}$,
∴2a=2,即雙曲線的實軸長為2.
故選A.

點評 本題考查雙曲線的性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,矩形ABCD中,AB=12,AD=6,E、F分別為CD、AB邊上的點,且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連結(jié)AP、PF,其中PF=2$\sqrt{5}$.

(1)求證:PF⊥平面ABED;
(2)求點A到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若sinα=$\frac{12}{13}$,α∈($\frac{π}{2}$,π),則tan2α的值為( 。
A.$\frac{60}{119}$B.$\frac{120}{119}$C.-$\frac{60}{119}$D.-$\frac{120}{119}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=(m2-m-1)${x}^{{m}^{2}+m-3}$是冪函數(shù),對任意的x1、x2∈(0,+∞),且x1≠x2,滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,若a、b∈R,且a+b>0,ab<0,則f(a)+f(b)的值(  )
A.恒小于0B.恒大于0C.等于0D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,AB是圓O的直徑,延長BA至C,使AC=$\frac{1}{3}$BC,過C作圓O的切割線交圓O于M、N兩點,且AM=MN.
(1)證明:∠AOM=∠ABN;
(2)若MN=2,求AN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且Sn=ln(n+1)-a.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=e${\;}^{{a}_{n}}$(e為自然對數(shù)的底數(shù)),定義:$\underset{\stackrel{n}{π}}{k=1}$bk=b1•b2•b3•…•bn,求$\underset{\stackrel{n}{π}}{k=1}$bk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足z+i-3=3-i,則z等于(  )
A.0B.2iC.6D.6-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知t>1,x∈(-1,+∞),證明:(1+x)t≥1+tx;
(2)設(shè)0<a≤b<1,證明:aa+bb≥ab+ba

查看答案和解析>>

同步練習(xí)冊答案