2.已知log183=a,log518=b,用a,b表示log3690=$\frac{1+b}{2b-2ab}$.

分析 由log183=a,可得log182=$lo{g}_{18}\frac{18}{9}$=1-2log183=1-2a.于是log3690=$\frac{lo{g}_{18}(18×5)}{lo{g}_{18}(18×2)}$=$\frac{1+lo{g}_{18}5}{1+lo{g}_{18}2}$,即可得出.

解答 解:∵log183=a,∴l(xiāng)og182=$lo{g}_{18}\frac{18}{9}$=1-2log183=1-2a.
log518=b,
∴l(xiāng)og3690=$\frac{lo{g}_{18}(18×5)}{lo{g}_{18}(18×2)}$=$\frac{1+lo{g}_{18}5}{1+lo{g}_{18}2}$=$\frac{1+\frac{1}}{1+1-2a}$=$\frac{1+b}{2b-2ab}$.
故答案為:$\frac{1+b}{2b-2ab}$.

點評 本題考查了對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{3}{2}asinC$,且△ABC的面積為a2sinB,則cosB等于( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x、y滿足約束條件$\left\{\begin{array}{l}y≤x+1\\ 5x+3y≤15\\ 2y≥1\end{array}\right.$,則z=x+y的最大值為(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為F1,F(xiàn)2,A,B是C左支上兩點且$\overrightarrow{A{F_1}}=3\overrightarrow{{F_1}B}$,∠ABF2=90°,則雙曲線C的離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|an|是遞增的等差數(shù)列,a1,a2是函數(shù)f(x)=x2-10x+21的兩個零點.
(1)求數(shù)列|an|的通項公式;
(2)記bn=an×3n,求數(shù)列|bn|的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知過拋物線y2=2px(p>0)的焦點F,斜率為2$\sqrt{2}$的直線交拋物線于A(x1,y1),B(x2,y2)兩點,且|AB|=9.
(1)求該拋物線的方程;
(2)設(shè)該拋物線的準(zhǔn)線為l,P為該拋物線上一點,PC⊥l,C為垂足,若直線CF的斜率為-$\sqrt{3}$,求|PF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一個點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-m{x^2}+m-1$的單調(diào)減區(qū)間是(0,4),則實數(shù)m=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點為F1、F2,正△AF1F2的中心恰為橢圓的上頂點B,且$\overrightarrow{B{F_1}}•\overrightarrow{B{F_2}}=-2$,點M為橢圓上任一點,點N與M關(guān)于x軸對稱.
(1)求橢圓的方程;
(2)點P為橢圓上的一動點,直線PM,PN都不與坐標(biāo)軸平行,且分別與x軸交于C,D兩點,從原點O作經(jīng)過點C,D兩點的圓E的切線,切點為H,判斷|OH|是否為定值,若為定值,求出定值,若不為定值,求出|OH|的范圍.

查看答案和解析>>

同步練習(xí)冊答案