分析 設出矩陣,利用特征向量的定義,即二階變換矩陣的概念,建立方程組,即可得到結(jié)論.
解答 解:由題意,$[\begin{array}{l}{1}&{a}\\{-1}&\end{array}]$$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{-1}\\{5}\end{array}]$,即$\left\{\begin{array}{l}{1-a=-1}\\{-1-b=-5}\end{array}\right.$,解得a=2,b=4,所以矩陣M=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$.
所以矩陣M的特征多項式為f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6,令f(λ)=0,得矩陣M的特征值為2和3.
點評 本題考查特征值,考查二階變換矩陣,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
B. | 若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
C. | 若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ | |
D. | 若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1<a<1 | B. | -1≤a≤1 | C. | -1≤a<1 | D. | -1<a≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com