19.已知矩陣M=$[\begin{array}{l}{1}&{a}\\{-1}&\end{array}]$,點(1,-1)在M對應的變換作用下得到點(-1,5),求矩陣M的特征值.

分析 設出矩陣,利用特征向量的定義,即二階變換矩陣的概念,建立方程組,即可得到結(jié)論.

解答 解:由題意,$[\begin{array}{l}{1}&{a}\\{-1}&\end{array}]$$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{-1}\\{5}\end{array}]$,即$\left\{\begin{array}{l}{1-a=-1}\\{-1-b=-5}\end{array}\right.$,解得a=2,b=4,所以矩陣M=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$.
所以矩陣M的特征多項式為f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6,令f(λ)=0,得矩陣M的特征值為2和3.

點評 本題考查特征值,考查二階變換矩陣,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線x+y=m(m>0)與圓x2+y2=1相交于P,Q兩點,且∠POQ=120°(其中O為原點),那么m的值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知正方體ABCD-A1B1C1D1內(nèi)有一個內(nèi)切球O,則在正方體ABCD-A1B1C1D1內(nèi)任取點M,求點M在球O內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在梯形ABCD中,AD∥BC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=4,AC與BD相交于點E,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,則$\overrightarrow{AE}$•$\overrightarrow{CD}$=-$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知Sn為數(shù)列{an}的前n項和,an=2•3n-1(n∈N*),若bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,則b1+b2+…bn=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知x,y∈R,(  )
A.若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知袋中裝有大小相同的2個白球,2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)姆种迪嗉雍蠓Q為該局的得分,計算完得分后將球放回袋中.當出現(xiàn)第n局得n(n∈N*)分的情況就算游戲過關,同時游戲結(jié)束,若四局過后仍未過關,游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時局數(shù)X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知點(x,y)在△ABC所包圍的陰影區(qū)域內(nèi)(包括邊界),若有且僅有B(4,2)是使得z=ax-y取得最大值的最優(yōu)解,則實數(shù)a的取值范圍為( 。
A.-1<a<1B.-1≤a≤1C.-1≤a<1D.-1<a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的圖象與x軸的相鄰兩個交點的距離為$\frac{π}{2}$.
(1)求w的值;
(2)設函數(shù)g(x)=f(x)+2cos2x-1,求g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

同步練習冊答案