A. | 若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
B. | 若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
C. | 若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ | |
D. | 若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ |
分析 利用絕對(duì)值不等式的性質(zhì),得出(x2-y)+(y2-x)≤|x2-y|+|y2-x|=|x-y2|+|x2-y|≤1,即得${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$,判斷B正確.
解答 解:對(duì)于A,|x-y2|+|x2+y|≤1,
由${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$化簡(jiǎn)得x2+x+y2-y≤1,二者沒有對(duì)應(yīng)關(guān)系;
對(duì)于B,由(x2-y)+(y2-x)≤|x2-y|+|y2-x|=|x-y2|+|x2-y|≤1,
∴x2-x+y2-y≤1,即${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$,命題成立;
對(duì)于C,|x+y2|+|x2-y|≤1,
由${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$化簡(jiǎn)得x2+x+y2+y≤1,二者沒有對(duì)應(yīng)關(guān)系;
對(duì)于D,|x+y2|+|x2+y|≤1,
化簡(jiǎn)${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$得x2-x+y2+y≤1,二者沒有對(duì)應(yīng)關(guān)系.
故選:B.
點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的應(yīng)用問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2017 | B. | 2018 | C. | 8068 | D. | 4034 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com