16.設(shè)a,b,c>0,則$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$( 。
A.都不大于2B.都不小于2
C.至少有一個(gè)不大于2D.至少有一個(gè)不小于2

分析 三個(gè)數(shù)中$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$至少有一個(gè)不小于2.利用反證法與基本不等式的性質(zhì)即可證明.

解答 解:三個(gè)數(shù)中$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$至少有一個(gè)不小于2.下面利用反證法證明:
a,b,c都是正數(shù),假設(shè)三個(gè)數(shù)$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$都小于2.
則6>a+$\frac{1}$+b+$\frac{1}{c}$+c+$\frac{1}{a}$=a+$\frac{1}{a}$+$\frac{1}$+b+$\frac{1}{c}$+c≥$2\sqrt{a•\frac{1}{a}}$+2$\sqrt{b•\frac{1}}$+2$\sqrt{c•\frac{1}{c}}$=6,當(dāng)且僅當(dāng)a=b=c=1時(shí)取等號.
即6>6,矛盾,
因此假設(shè)不成立,
∴三個(gè)數(shù)$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$中至少有一個(gè)不小于2.
故選:D.

點(diǎn)評 本題考查了反證法與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{(1-i)^{2}}{1+i}$的共軛復(fù)數(shù)$\overline{z}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}}\right.$(參數(shù)θ∈[0,2π])
(1)將直線l和圓C的參數(shù)方程化為普通方程;
(2)求圓心到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:y=k(x-1)交x軸于點(diǎn)A,交y軸于點(diǎn)B,交直線y=x于點(diǎn)C,
(1)若k=3,求$\frac{{|{BC}|}}{{|{AC}|}}$的值;
(2)若|BC|=2|AC|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x∈R,向量$\overrightarrow a=({x,1}),\overrightarrow b=({4,-2})$,且$\overrightarrow a∥\overrightarrow b$,則$|{\overrightarrow a+\overrightarrow b}|$=( 。
A.$\sqrt{5}$B.5C.$\sqrt{85}$D.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在正方體ABC的-A1B1C1D1中,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則三棱錐P-BCD的俯視圖與正視圖面積之比的最大值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈N|-1<x<5},B={x|-x2+5x+6>0},則A∩B=( 。
A.{-1,0,1,3}B.{-1,0,1,2}C.{-1,0,1}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,則z=2x+y的最大值是( 。
A.$\frac{7}{2}$B.$\frac{21}{2}$C.14D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)x、y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,則z=-2x+3y的最小值是-4.

查看答案和解析>>

同步練習(xí)冊答案