20.計算:
(1)$(\frac{9}{4}{)^{\frac{1}{2}}}-{(-2.5)^0}-{(\frac{8}{27})^{\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$;
(2)(lg 5)2+lg 2•lg 50.

分析 (1)利用指數(shù)冪的運算性質(zhì)即可得出.
(2)利用對數(shù)的運算性質(zhì)及其lg2+lg5=1即可得出.

解答 解:(1)原式=$(\frac{3}{2})-1-{(\frac{2}{3})^2}+\frac{4}{9}=\frac{1}{2}$.
(2)原式=(lg 5)2+lg 2•(lg 2+2lg 5)
=(lg 5)2+2lg 5•lg 2+(lg 2)2
=(lg 5+lg 2)2=1.

點評 本題考查了指數(shù)冪與對數(shù)的運算性質(zhì)及其lg2+lg5=1,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=($\frac{1}{2}$)x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1-x2),則關(guān)于函數(shù)y=h(x)的下列4個結(jié)論:
①函數(shù)y=h(x)的圖象關(guān)于原點對稱;
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;         
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號為②③④.(將你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線C1:y=sinx,曲線${C_2}:{x^2}+{(y+r-\frac{1}{2})^2}={r^2}$(r>0),它們交點的個數(shù)( 。
A.恒為偶數(shù)B.恒為奇數(shù)C.不超過2017D.可超過2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.集合{x|1<x<6,x∈N*}的非空真子集的個數(shù)為14 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列判斷中正確的是( 。
A.$f(x)={(\sqrt{x})^2}$是偶函數(shù)B.$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函數(shù)
C.$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是偶函數(shù)D.$f(x)=\frac{{\sqrt{4-{x^2}}}}{|x-3|-3}$是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列四個命題:
(1)函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2-8a<0且a>0;
(3)y=x2-2|x|-3的遞增區(qū)間為[1,+∞);
(4)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函數(shù).
(5)若函數(shù)f(x-1)的定義域為[1,2],則函數(shù)f(2x)的定義域為$[0,\frac{1}{2}]$.
其中正確的命題是(5)(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=|x-3|+|x-a|,如果對任意x∈R,f(x)≥4,則a的取值范圍是( 。
A.(-∞,-7]∪[1,+∞)B.[-7,1]C.(-∞,-1]∪[7,+∞)D.[-1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{x^2}+ax+4}}{x}$為奇函數(shù).
(1)若函數(shù)f(x)在區(qū)間$[{\frac{m}{2},m}]({m>0})$上為單調(diào)函數(shù),求m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[1,k]上的最小值為3k,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-4\overrightarrow b}|=2\sqrt{7}$,則向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案