14.在△ABC中,b=2,B=30°,c=2$\sqrt{3}$,求a和A,C.

分析 先根據(jù)正弦定理求出角C,再分類討論,求出A和a即可.

解答 解:由正弦定理可得sinC=$\frac{csinB}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵0<C<150°,
∴C=60°或120°,
當(dāng)C=60°時(shí),A=90°,此時(shí)a=2b=4,
當(dāng)C=120°時(shí),A=30°,此時(shí)a=b=2

點(diǎn)評(píng) 本題考查了正弦定理和解三角形的有關(guān)知識(shí),屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且圓M:x2+y2-$\frac{3}{2}$x-1=0過(guò)橢圓C的上、下、右三個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)將橢圓C的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{\sqrt{2}}{2}$倍,縱坐標(biāo)不變.得到橢圓C′的方程,已知直線l與橢圓C′只有1個(gè)交點(diǎn),探究.是否存在兩個(gè)定點(diǎn)P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直線l的距離之積為1,如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo),如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求下列函數(shù)的導(dǎo)函數(shù).
(1)y=x3+2sinx-3cosx
(2)y=sin(2x-5)+ln(3x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)M是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),且$∠{F_1}M{F_2}=\frac{π}{3}$,則△MF1F2的面積為(  )
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,則角C等于(  )
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.參數(shù)方程$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ為參數(shù))表示的曲線是( 。
A.以$({±\sqrt{7},0})$為焦點(diǎn)的橢圓B.以(±4,0)為焦點(diǎn)的橢圓
C.離心率為$\frac{{\sqrt{7}}}{5}$的橢圓D.離心率為$\frac{3}{5}$的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{1}{2}$.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}滿足:a1=a,an+1=$\frac{2{a}_{n}}{{a}_{n}^{2}+1}$(a>0且a≠1,n∈N*).
(1)證明:當(dāng)n≥2時(shí),an<an+1<1;
(2)若b∈(a2,1),求證:當(dāng)整數(shù)k≥$\frac{(b-{a}_{2})(b+1)}{{a}_{2}(1-b)}$+1時(shí),ak+1>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,0<β<α<π.
(1)若$|\overrightarrow a-\overrightarrow b|=\sqrt{2}$,求$\overrightarrow a,\overrightarrow b$的夾角θ的值;
(2)設(shè)$\overrightarrow c=(0,1)$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案