16.(1)已知t>1,x∈(-1,+∞),證明:(1+x)t≥1+tx;
(2)設(shè)0<a≤b<1,證明:aa+bb≥ab+ba

分析 (1)令f(x)=(1+x)t-tx-1,求導(dǎo)數(shù),當(dāng)t>1時(shí),(1+x)t-1-1單調(diào)遞增,討論在x>-1時(shí),求出單調(diào)增區(qū)間和單調(diào)減區(qū)間,得到x=0是f(x)的唯一極小值點(diǎn),則f(x)≥(0)=0,即可得證;
(2)分a=b和a≠b兩種情況證明結(jié)論,并構(gòu)造函數(shù)φ(x)=xa-xb,先證得φ(x)是單調(diào)減函數(shù),進(jìn)而得到結(jié)論.

解答 證明:(1)令f(x)=(1+x)t-1-tx,f′(x)=t[(1+x)t-1-1],
∵t>1,∴t-1>0,
x∈(-1,0]時(shí),(1+x)t-1≤1,f′(x)≤0,函數(shù)單調(diào)遞減;x>0時(shí),f′(x)>0,函數(shù)單調(diào)遞增,
∴x=0是f(x)的唯一極小值點(diǎn),
∴f(x)≥f(0)=0,
即:(1+x)t≥1+tx;
(2)當(dāng)a=b,不等式顯然成立;
當(dāng)a≠b時(shí),不妨設(shè)a<b,
則aa+bb≥ab+ba?aa-ab≥ba-bb
令φ(x)=xa-xb,x∈[a,b]
下證φ(x)是單調(diào)減函數(shù).
∵φ′(x)=axa-1-bxb-1=axb-1(xa-b-$\frac{a}$)
易知a-b∈(-1,0),1+a-b∈(0,1),$\frac{1}{1+a-b}$>1,
由(1)知當(dāng)t>1,(1+x)t>1+tx,x∈[a,b],
∴$^{\frac{1}{1+a-b}}$=$[1+(b-1)]^{\frac{1}{1+a-b}}$>1+$\frac{b-1}{1+a-b}$=$\frac{a}{1+a-b}$>a,
∴b>a1+a-b,∴$\frac{a}$>aa-b≥xa-b,
∴φ'(x)<0,
∴φ(x)在[a,b]上單調(diào)遞減.
∴φ(a)>φ(b),
即aa-ab>ba-bb,
∴aa+bb>ab+ba
綜上,aa+bb≥ab+ba成立.

點(diǎn)評(píng) 考查不等式的證明,考查運(yùn)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,證明不等式的方法,構(gòu)造函數(shù)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知過點(diǎn)($\sqrt{2}$,$\sqrt{5}$)的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{6}$,則該雙曲線的實(shí)軸長為( 。
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若隨機(jī)變量X的概率分布如表,則表中a的值為( 。
X1234
P0.20.30.4a
A.1B.0.1C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將正弦曲線y=sinx的縱坐標(biāo)y伸長到原來的3倍,橫坐標(biāo)不變,得到的曲線是y=3sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知θ∈(0,π),則y=$\frac{1}{{{{sin}^2}θ}}+\frac{9}{{{{cos}^2}θ}}$的最小值為( 。
A.6B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2x+loga(x+1)+3恒過定點(diǎn)為( 。
A.(0,3)B.(0,4)C.$(-1,\frac{7}{2})$D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點(diǎn)為A,B為⊙O上一點(diǎn),且BC∥PO.
(I)求證:PB為⊙O的切線
(Ⅱ)若⊙O的半徑為1,PA=3,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C的極坐標(biāo)方程為ρ═4sin(θ-$\frac{π}{3}$),以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系xOy.
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C上,點(diǎn)Q的直角坐標(biāo)是(cosφ,sinφ),其中(φ∈R),求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊答案