3.已知點P($\sqrt{3}$,1),Q(cosx,sinx),O為坐標原點,函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函數(shù)f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A為△ABC的內(nèi)角,f(A)=4,BC=3,求△ABC周長的最大值.

分析 (Ⅰ)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后求解f(x)的最小正周期;
(Ⅱ)利用函數(shù)的解析式求解A,然后利用余弦定理求解即可,得到bc的范圍,然后利用基本不等式求解最值.

解答 解:(Ⅰ)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$=($\sqrt{3}$,1)•($\sqrt{3}$-cosx$\sqrt{3}$,1-sinx)
=-$\sqrt{3}$cosx-sinx+4=-2sin(x+$\frac{π}{3}$)+4,
f(x)的最小正周期T=$\frac{2π}{2}$=π;
(Ⅱ)∵f(A)=4,∴A=$\frac{2π}{3}$,
又∵BC=3,
∴9=(b+c)2-bc.
∵bc≤$\frac{(b+c)^{2}}{4}$,
∴$\frac{3(b+c)^{2}}{4}≤9$,
∴b+c≤2$\sqrt{3}$,當且僅當b=c取等號,
∴三角形周長最大值為3+2$\sqrt{3}$.

點評 本題考查向量的數(shù)量積以及兩角和與差的三角函數(shù),三角函數(shù)的周期,基本不等式以及余弦定理的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個數(shù),則依次規(guī)律A(8,2)為( 。
A.$\frac{1}{45}$B.$\frac{1}{86}$C.$\frac{1}{122}$D.$\frac{1}{167}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}&{\;}\\{ax+y≥4}&{\;}\\{x-2y+3≥0}&{\;}\end{array}\right.$,目標函數(shù)z=2x-3y的最大值是2,則實數(shù)a=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)是定義在R上的可導函數(shù),其導函數(shù)為f′(x),則命題P:“?x1,x2∈R,且x1≠x2,|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|<2017”是命題Q:“?x∈R,|f′(x)|<2017”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設點M到坐標原點的距離和它到直線l:x=-m(m>0)的距離之比是一個常數(shù)$\frac{\sqrt{2}}{2}$.
(Ⅰ)求點M的軌跡;
(Ⅱ)若m=1時得到的曲線是C,將曲線C向左平移一個單位長度后得到曲線E,過點P(-2,0)的直線l1與曲線E交于不同的兩點A(x1,y1),B(x2,y2),過F(1,0)的直線AF、BF分別交曲線E于點D、Q,設$\overrightarrow{AF}$=α$\overrightarrow{FD}$,$\overrightarrow{BF}$=β$\overrightarrow{FQ}$,α、β∈R,求α+β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(8-x),x≤0\\ f(x-1),x>0\end{array}$則f(3)=( 。
A.3B.2C.log29D.log27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大小;
(Ⅱ) 若a=$\sqrt{7}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知曲線C:$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=a+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),A(-1,0),B(1,0),若曲線C上存在點P滿足$\overrightarrow{AP}$•$\overrightarrow{BP}$=0,則實數(shù)a的取值范圍為(  )
A.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在區(qū)間[0,1]上隨機選取兩個數(shù)x和y,則y>3x的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{12}$

查看答案和解析>>

同步練習冊答案