15.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大;
(Ⅱ) 若a=$\sqrt{7}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求b+c的值.

分析 (Ⅰ) 求出$B+C=\frac{π}{3}$,即可求角A的大小;
(Ⅱ) 若a=$\sqrt{7}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,利用余弦定理及三角形的面積公式,求b+c的值.

解答 解:(Ⅰ)由已知得$\frac{1-cos(B-C)}{2}+sinBsinC=\frac{1}{4}$,(2分)
化簡得$\frac{1-cosBcosC-sinBsinC}{2}+sinBsinC=\frac{1}{4}$,
整理得$cosBcosC-sinBsinC=\frac{1}{2}$,即$cos(B+C)=\frac{1}{2}$,(4分)
由于0<B+C<π,則$B+C=\frac{π}{3}$,所以$A=\frac{2π}{3}$.(6分)
(Ⅱ)因?yàn)?{S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}bc×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{2}$,所以bc=2.(8分)
根據(jù)余弦定理得${(\sqrt{7})^2}={b^2}+{c^2}-2bc•cos\frac{2π}{3}={b^2}+{c^2}+bc={(b+c)^2}-bc$,(10分)
即7=(b+c)2-2,所以b+c=3.(12分)

點(diǎn)評(píng) 本題考查三角函數(shù)知識(shí)的運(yùn)用,考查三角形面積的計(jì)算,考查余弦定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0,}&{\;}\\{x-y≤0,}&{\;}\\{x-2y+2≥0,}&{\;}\end{array}\right.$則(x+3)2+(y-$\frac{1}{2}$)2的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若($\frac{1}{x}$+2x)6展開式的常數(shù)項(xiàng)為(  )
A.120B.160C.200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)P($\sqrt{3}$,1),Q(cosx,sinx),O為坐標(biāo)原點(diǎn),函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函數(shù)f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A為△ABC的內(nèi)角,f(A)=4,BC=3,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知0<c<1,a>b>1,下列不等式成立的是( 。
A.ca>cbB.ac<bcC.$\frac{a}{a-c}>\frac{b-c}$D.logac>logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.α是一個(gè)平面,m,n是兩條直線,A是一個(gè)點(diǎn),若m?α,n?α,且A∈m,A∈α,則m,n的位置關(guān)系不可能是(  )
A.垂直B.相交C.異面D.平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4$\sqrt{3}$B.4$\sqrt{2}$C.4D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=ex-3x-1(e為自然對(duì)數(shù)的底數(shù))的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a,b∈R,定義運(yùn)算“?”:a?b=$\left\{\begin{array}{l}{aa-b≤1}\\{ba-b>1}\end{array}\right.$,函數(shù)f(x)=(x2-2)?(x-1),x∈R,若方程f(x)-a=0只有兩個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A.[-2,-1]∪(1,2)B.(-2,-1]∪(1,2]C.[-2,-1]∪[1,2]D.(-2,-1]∪(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案