17.已知函數(shù)$f(x)=\frac{{{{ln}^2}x+lnx+1}}{x}$,$g(x)=\frac{x^2}{e^x}$.
(1)分別求函數(shù)f(x)與g(x)在區(qū)間(0,e)上的極值;
(2)求證:對(duì)任意x>0,f(x)>g(x).

分析 (1)求導(dǎo),利用導(dǎo)數(shù)與函數(shù)的單調(diào)性及極值關(guān)系,即可求得f(x)及g(x)單調(diào)區(qū)間及極值;
(2)當(dāng)x∈(0,e)時(shí)f(x)≥1,$g(x)≤\frac{4}{e^2}<1$,f(x)>g(x);x∈[e,+∞)時(shí)$h(x)=\frac{x^3}{e^x}$,則$h'(x)=\frac{{{x^2}(3-x)}}{e^x}$,由函數(shù)的單調(diào)性ln2x+lnx+1>h(x),即可求得f(x)>g(x).

解答 解:(1)$f'(x)=\frac{-lnx(lnx-1)}{x^2}$,
令f'(x)>0,解得:1<x<e,f'(x)<0,解得:0<x<1或x>e,
故f(x)在(0,1)和(e,+∞)上單調(diào)遞減,
在(1,e)上遞增,
∴f(x)在(0,e)上有極小值f(1)=1,無(wú)極大值;
$g'(x)=\frac{x(2-x)}{e^x}$,g'(x)>0,則0<x<2,
故g(x)在(0,2)上遞增,在(2,+∞)上遞減,
∴g(x)在(0,e)上有極大值,$g(2)=\frac{4}{e^2}$,無(wú)極小值;
(2)由(1)知,當(dāng)x∈(0,e)時(shí),f(x)≥1,$g(x)≤\frac{4}{e^2}<1$,
故f(x)>g(x);
當(dāng)x∈[e,+∞)時(shí),ln2x+lnx+1≥1+1+1=3,
令$h(x)=\frac{x^3}{e^x}$,則$h'(x)=\frac{{{x^2}(3-x)}}{e^x}$,
故h(x)在[e,3]上遞增,在(3,+∞)上遞減,
∴$h(x)≤h(3)=\frac{27}{e^3}<\frac{27}{{{{2.7}^3}}}<3$,ln2x+lnx+1>h(x);
綜上,對(duì)任意x>0,f(x)>g(x).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性及極值關(guān)系,考查利用導(dǎo)數(shù)求函數(shù)的極值,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(-1,k),$\overrightarrow{a}⊥\overrightarrow$,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知0<α<$\frac{π}{2}$,且cos($\frac{π}{2}+α$)=$-\frac{\sqrt{2}}{2}$,則sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,不等式組$\left\{\begin{array}{l}x≥1\\ y≥x\\ x+y-3≤0\end{array}\right.$所表示的平面區(qū)域的面積為( 。
A.$\frac{2}{9}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(-\frac{x}{2}),x≤-1\\-\frac{1}{3}{x^2}+\frac{4}{3}x+\frac{2}{3},x>-1\end{array}\right.$,若f(x)在區(qū)間[m,4]上的值域?yàn)閇-1,2],則實(shí)數(shù)m的取值范圍為[-8,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某校從高二年級(jí)學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高二年級(jí)共有學(xué)生1000人,試估計(jì)成績(jī)不低于60分的人數(shù);
(2)求該校高二年級(jí)全體學(xué)生期中考試成績(jī)的眾數(shù)、中位數(shù)和平均數(shù)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)O(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上的一動(dòng)點(diǎn),設(shè)u=|PO|2+|PA|2+|PB|2,求u的最大值及相應(yīng)的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|-3<2x+1<11},B={x|m-1≤x≤2m+1}
(1)當(dāng)m=3時(shí),求A∩∁RB;
(2)若A∪B=A,求m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,B=30°,AB=$\sqrt{3}$,AC=1,則△ABC的面積是(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案