1.已知函數(shù)f(x)=ax(0<a且a≠1)滿足f(2)=81,則f(-$\frac{1}{2}$)=( 。
A.±1B.±3C.$\frac{1}{3}$D.3

分析 由已知得f(2)=a2=81,解得a=9,由此能求出f(-$\frac{1}{2}$).

解答 解:∵函數(shù)f(x)=ax(0<a且a≠1)滿足f(2)=81,
∴f(2)=a2=81,解得a=9,
∴f(-$\frac{1}{2}$)=${9}^{-\frac{1}{2}}$=$\frac{1}{3}$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意待定系數(shù)法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.某超市去年的銷售額為a萬元,計劃在今后10年內(nèi)每年比上一年增長10%,從今年起10年內(nèi)這家超市的總銷售額為( 。┤f元.
A.1.19aB.1.15aC.10a(1.110-1)D.11a(1.110-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcosC+$\sqrt{3}$bsinC-a-c=0,則角B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.f(x)是R上的奇函數(shù)且其圖象關于直線x=1對稱,當x∈(0,1)時f(x)=9x,求f($\frac{5}{2}$)+f(2)的值為( 。
A.-3B.12C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)計算:-$\frac{5}{2}$log34+log3$\frac{32}{9}$-($\frac{1}{64}$)${\;}^{-\frac{2}{3}}$
(2)已知2a=5b=100,求$\frac{1}{a}$+$\frac{1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a>b,c>d,且c,d不為0,那么下列不等式一定成立的是( 。
A.ad>bcB.ac>bdC.a-c>b-dD.a+c>b+d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式x(x-1)<2的解集是( 。
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知數(shù)列{an}滿足a1=1,且對任意的m,n∈N*,都有am+n=am+an+mn,則$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2017}}}}$=( 。
A.$\frac{4032}{2016}$B.$\frac{4034}{2017}$C.$\frac{4032}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.一批材料可以建成100m長的圍墻,現(xiàn)用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場地,中間隔成3個面積相等的小矩形(如圖),則圍成的矩形場地的最大總面積為(圍墻厚度忽略不計)625m2

查看答案和解析>>

同步練習冊答案