8.已知M={a,b,c},N={-2,0,2},且從M到N的映射f滿足f(a)>f(b)≥f(c),試確定這樣的映射f的個(gè)數(shù).

分析 由題意及映射概念逐一寫(xiě)出滿足條件的映射得答案.

解答 解:M={a,b,c},N={-2,0,2},
∵f(a)>f(b)≥f(c),
∴a對(duì)應(yīng)2時(shí),b對(duì)應(yīng)0,c對(duì)應(yīng)0或-2,有2個(gè)映射;
a對(duì)應(yīng)2時(shí),b對(duì)應(yīng)-2,c對(duì)應(yīng)-2,有1個(gè)映射;
a對(duì)應(yīng)0時(shí),b對(duì)應(yīng)-2,c對(duì)應(yīng)-2,有1個(gè)映射.
綜上,滿足條件的映射個(gè)數(shù)為4個(gè).

點(diǎn)評(píng) 本題考查映射的概念,關(guān)鍵是對(duì)題意及映射概念的理解,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)M═{y|y=x2+1},N={y|y=x+1},則M∩N={y|y≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是線段PC的中點(diǎn).
(1)求異面直線AP與BE所成角的大;
(2)若點(diǎn)F在線段PB上,使得二面角F-DE-B的正弦值為$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)y=$\sqrt{x-\frac{1}{x}}$的定義域是( 。
A.{x|x≤1}B.{x|x≤-1或x≥1}C.{x|-1≤x≤1}D.{x|-1≤x<0或x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知數(shù)列{an}與{bn}都是等差數(shù)列,且$\underset{lim}{n→∞}$$\frac{{a}_{n}}{_{n}}$=3,則$\underset{lim}{n→∞}$$\frac{{a}_{1}+{a}_{2}+…+{a}_{2n}}{_{1}+_{2}+…+_{3n}}$的值為(  )
A.$\frac{9}{4}$B.$\frac{4}{3}$C.$\frac{4}{3}$或2D.$\frac{4}{3}$或$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合M={x|x=$\frac{k}{2}$•180°+45°,k∈Z},N={x|x=$\frac{k}{4}$•180°+45°,k∈Z},判斷兩集合的關(guān)系( 。
A.M=NB.M?NC.N?MD.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2+a7-a9=8,a12-a5=4,則S13等于( 。
A.152B.154C.156D.158

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求下列函數(shù)的定義域:
(1)f(x)=$\frac{\sqrt{5-x}}{|x|-3}$;
(2)y=$\sqrt{x-1}$+$\sqrt{2-x}$;
(3)y=$\frac{(x+1)^{0}}{\sqrt{x+2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,且公差d>0,數(shù)列{bn}為等比數(shù)列,若a1=b1>0,a5=b5,則( 。
A.a9>b9B.a9=b9
C.a9<b9D.a9與b9大小無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案