4.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.18B.21C.24D.27

分析 根據(jù)幾何體的三視圖知,該幾何體是棱長為2的正方體,其上邊一角去掉一個(gè)棱長為1的正方體,
其表面積仍為原正方體的表面積.

解答 解:根據(jù)幾何體的三視圖知,
該幾何體是棱長為2的正方體,其上邊一角去掉一個(gè)棱長為1的正方體,
該幾何體的表面積仍為原正方體的表面積,
即S=6×22=24.
故選:C.

點(diǎn)評 本題考查了空間幾何體三視圖的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在命題p的四種形式(原命題、逆命題、否命題、逆否命題)中,正確命題的個(gè)數(shù)記為f(p).已知命題p:“若x2-3x+2<0,則1<x<2”.那么f(p)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C方程為$\frac{{x}^{2}}{{a}^{2}}$+y2=1,過右焦點(diǎn)斜率為l的直線到原點(diǎn)的距離為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M(2,0),過點(diǎn)M的直線與橢圓C相交于E,F(xiàn)兩點(diǎn),當(dāng)線段EF的中點(diǎn)落在由四點(diǎn)C1(-1,0),C2(1,0),B1(0,-1),B2(0,1)構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.化簡:$\frac{tan(2π-θ)sin(-2π-θ)cos(6π-θ)}{cos(θ-π)sin(5π+θ)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(mod m),例如10=2(mod 4),下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線C與雙曲線$\frac{x^2}{4}-{y^2}=1$有共同的漸近線,且一個(gè)焦點(diǎn)與拋物線x2=20y的焦點(diǎn)重合,則雙曲線C的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(mx-1)ex-x2
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為e-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)<-x2+mx-m有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題P:存在x∈R,mx2+1≤1,q對任意x∈R,x2+mx+1≥0,若p∨(¬q)為假命題,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,0)∪(2,+∞)B.(0,2]C.[0,2]D.Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的邊長為4的等邊三角形,AE=2,CD與平面ABDE所成角的余弦值為$\frac{\sqrt{10}}{4}$,F(xiàn)是線段CD上一點(diǎn).
(Ⅰ)若F是線段CD的中點(diǎn),證明:平面CDE⊥面DBC;
(Ⅱ)求二面角B-EC-D的平面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案