10.已知雙曲線方程為$\frac{x^2}{4}-{y^2}$=1,則該雙曲線的漸近線方程為$y=±\frac{1}{2}x$.

分析 利用雙曲線方程,直接求解即可.

解答 解:雙曲線方程為$\frac{x^2}{4}-{y^2}$=1,則該雙曲線的漸近線方程為:$y=±\frac{1}{2}x$.
故答案為:$y=±\frac{1}{2}x$.

點評 本題考查雙曲線的漸近線方程的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{14}{3}$B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓上,則該雙曲線的離心率為( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.直線x+y=c與圓x2+y2=8相切,則正實數(shù)c的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知拋物線y2=6x的交點為F,準線為l,過點F的直線與拋物線交于點M,N,與l交于點P,若$\overrightarrow{MF}$=2$\overrightarrow{FN}$,O是坐標原點,則|OP|=( 。
A.$\sqrt{13}$B.$\sqrt{63}$C.$\frac{4\sqrt{33}}{3}$D.$\frac{3\sqrt{33}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知$\frac{tanα}{tanα-1}$=-1,
(1)求$\frac{sinα-2cosα}{sinα+cosα}$的值;
(2)求sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$y=sin(2x+\frac{π}{3}-2m)(m>0)$為偶函數(shù),則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.等比數(shù)列{an}中,an>0,a5a6=9,則log3a1+log3a2+log3a3+…+log3a10=( 。
A.12B.10C.8D.2+log35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且$\overrightarrow{OA}$=$\vec a$,$\overrightarrow{OB}$=$\vec b$,$\overrightarrow{OC}$=$\vec c$,用$\vec a$,$\vec b$,$\vec c$表示$\overrightarrow{MN}$,則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}(\vec b+\vec c-\vec a)$B.$\frac{1}{2}(\vec a+\vec b-\vec c)$)C.$\frac{1}{2}(\vec a-\vec b+\vec c)$D.$\frac{1}{2}(\vec c-\vec a-\vec b)$

查看答案和解析>>

同步練習冊答案