2.將一枚質(zhì)地均勻的硬幣連續(xù)拋擲n次,若使得至少有一次正面向上的概率大于或等于$\frac{15}{16}$,則n的最小值為( 。
A.4B.5C.6D.7

分析 由題意,1-$(\frac{1}{2})^{n}$≥$\frac{15}{16}$,即可求出n的最小值.

解答 解:由題意,1-$(\frac{1}{2})^{n}$≥$\frac{15}{16}$,∴n≥4,
∴n的最小值為4,
故選A.

點評 本題考查概率的計算,考查對立事件概率公式的運用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列值為2的積分是(  )
A.$\int_0^5{({2x-4})dx}$B.$\int_0^π{cosxdx}$C.$\int_1^3{\frac{1}{x}dx}$D.$\int_0^π{sinxdx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a=($\frac{1}{2}$)${\;}^{\frac{1}{5}}$,b=($\frac{1}{5}$)${\;}^{-\frac{1}{2}}$,c=log${\;}_{\frac{1}{5}}$10,則a,b,c大小關(guān)系為(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點,直線l被拋物線C1截得的線段長是16,雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個焦點在拋物線C1的準(zhǔn)線上,則直線l與y軸的交點P到雙曲線C2的一條漸近線的距離是( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失。M分100分).
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān)?
 晉級成功晉級失敗合計
16  
  50
合計   
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在集合{x|0≤x≤a,a>0}中隨機取一個實數(shù)m,若|m|<2的概率為$\frac{1}{3}$,則實數(shù)a的值為(  )
A.5B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)命題p:函數(shù)f(x)=lg(ax2-2x+1)的定義域為R;命題q:當(dāng)$x∈[\frac{1}{2},\;2]$時,$x+\frac{1}{x}>a$恒成立,如果命題“p∧q”為真命題,則實數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a,b∈R,若a>b,則( 。
A.$\frac{1}{a}$<$\frac{1}$B.2a>2bC.lga>lgbD.sina>sinb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的y等于( 。
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案