10.函數(shù)y=$\frac{\sqrt{x}}{{x}^{2}-1}$的定義域是( 。
A.{x|x≥0或x≠1}B.{x|x≥0或 x≠±1}C.{x|x≥且x≠1}D.{x|x≥0且x≠1}

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x≥0}\\{{x}^{2}-1≠0}\end{array}\right.$,x≥0且x≠1.
∴函數(shù)y=$\frac{\sqrt{x}}{{x}^{2}-1}$的定義域是{x|x≥0且x≠1}.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:
[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?(X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+2}{n}_{+1}}$,X2>6.635時(shí)有99%的把握具有相關(guān)性)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由曲線y=$\sqrt{x}$,直線y=2-x及y軸所圍成的封閉圖形的面積為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-3,-4),B(6,3),直線l:x+my+1=0.
(1)求AB的中垂線方程;
(2)若點(diǎn)A與點(diǎn)B到直線l的距離相等,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)于函數(shù)y=f(x),部分x與y的對(duì)應(yīng)關(guān)系如表:
x123456
y315624
數(shù)列{an}滿足a1=1,且對(duì)任意n∈N*,點(diǎn)(an,an+1)都在函數(shù)y=f(x)的圖象上,則a1+a2+a3+…+a2016的值為5544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,棱長為2的正方體ABCD-A1B1C1D1中,P為A1B1的中點(diǎn)
(1)求證:B1C1∥平面A1BC;
(2)求三棱錐A1-BPC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.記max{m,n}表示m,n中的最大值,如max$\left\{{3,\sqrt{10}}\right\}=\sqrt{10}$.已知函數(shù)f(x)=max{x2-1,2lnx},g(x)=max{x+lnx,ax2+x}.
(1)求函數(shù)f(x)在$[{\frac{1}{2},1}]$上的值域;
(2)試探討是否存在實(shí)數(shù)a,使得g(x)<$\frac{3}{2}$x+4a對(duì)x∈(1,+∞)恒成立?若存在,求a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙、丙三位同學(xué)將獨(dú)立參加英語聽力測試,根據(jù)平時(shí)訓(xùn)練的經(jīng)驗(yàn),甲、乙、丙三人能達(dá)標(biāo)的概率分
別為P、$\frac{2}{3}$、$\frac{3}{5}$,若將三人中有人達(dá)標(biāo)但沒有全部達(dá)標(biāo)的概率為$\frac{2}{3}$,則P等于( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案