18.下列函數(shù)一定是指數(shù)函數(shù)的是( 。
A.y=2x+1B.y=x3C.y=3•2xD.y=3-x

分析 根據(jù)指數(shù)函數(shù)的定義,對選項中的函數(shù)進(jìn)行判斷即可.

解答 解:對于A,y=2x+1=2•5x,不是指數(shù)函數(shù);
對于B,y=x3是冪函數(shù),不是指數(shù)函數(shù);
對于C,y=3•2x不是指數(shù)函數(shù);
對于D,y=3-x=${(\frac{1}{3})}^{x}$是指數(shù)函數(shù).
故選:D.

點評 本題考查了指數(shù)函數(shù)的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{6}$.
(Ⅰ)求φ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知樣本數(shù)據(jù)3,2,1,a的平均數(shù)為2,則樣本的標(biāo)準(zhǔn)差是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等邊三角形,則直線PC與平面ABCD所成角的正切值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我校高二同學(xué)利用暑假進(jìn)行了社會實踐,對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組 數(shù)分 組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(1)請你補(bǔ)全頻率分布直方圖,并求出n,a,p的值;
(2)請你利用頻率分布直方圖估計本次調(diào)查人群的年齡的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知中心在原點的橢圓與雙曲線有公共焦點,左,右焦點分別為F1,F(xiàn)2,且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形,若|PF1|=8,橢圓與雙曲線的離心率分別為e1,e2,則e1•e2+1的取值范圍是( 。
A.(1,+∞)B.$(\frac{8}{3},+∞)$C.$(\frac{4}{3},+∞)$D.$(\frac{10}{9},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命題p:“m∈A”;命題q:“m∈B”.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題“p∨q”和“p∧q”中恰有一個真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線方程為y2=4x,直線L過定點P(-2,1),斜率為k,k為何值時,直線L與拋物線y2=4x只有一個公共點;有兩個公共點;沒有公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)h(x)=f(x)g(x),g(x)=f(x+a),a為常數(shù),a∈[0,π],設(shè)計一個定義域為R的函數(shù)y=f(x),及一個a值,使得h(x)=cos2x.你設(shè)計的f(x)=sinx+cosx,a=$\frac{π}{2}$(寫出滿足題意的一種情況即可)

查看答案和解析>>

同步練習(xí)冊答案