15.在(x+1)(x3+$\frac{1}{\sqrt{x}}$)n的展開式中,各項(xiàng)系數(shù)的和為256,則x項(xiàng)的系數(shù)是7(用數(shù)字作答)

分析 令x=1,則2×2n=256,解得n=7.$({x}^{3}+\frac{1}{\sqrt{x}})^{7}$的通項(xiàng)公式:Tr+1=${∁}_{7}^{r}$(x37-r$(\frac{1}{\sqrt{x}})^{r}$=${∁}_{7}^{r}$${x}^{21-\frac{7r}{2}}$.令21-$\frac{7r}{2}$=0,解得r,令21-$\frac{7r}{2}$=1,解得r.即可得出.

解答 解:令x=1,則2×2n=256,解得n=7.
$({x}^{3}+\frac{1}{\sqrt{x}})^{7}$的通項(xiàng)公式:Tr+1=${∁}_{7}^{r}$(x37-r$(\frac{1}{\sqrt{x}})^{r}$=${∁}_{7}^{r}$${x}^{21-\frac{7r}{2}}$.
令21-$\frac{7r}{2}$=0,解得r=6,令21-$\frac{7r}{2}$=1,無解.
∴x項(xiàng)的系數(shù)=1×${∁}_{7}^{6}$=7.
故答案為:7.

點(diǎn)評 本題考查了二項(xiàng)式定理的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)m=4-xi,n=3+2i,若復(fù)數(shù)$\frac{n}{m}$∈R,則實(shí)數(shù)x的值為(  )
A.-6B.6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,并且b=2
(1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
(2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{2^x}-1|,x≤1\\|{log_{2017}}(x-1)|,x>1\end{array}$,若方程f(x)=t有四個不同的實(shí)數(shù)根a,b,c,d,且a<b<c<d,則a+b+$\frac{1}{c}+\frac{1}pvh9939$的取值范圍為( 。
A.(-∞,1]B.[1,2017)C.(-∞,1)D.(1,2017)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1,F(xiàn)2為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,F(xiàn)(x)=x+$\frac{1}{x}$+af′(x)
(Ⅰ)當(dāng)a=1時,求M(x)=F(x)-f(x)的極值;
(Ⅱ)當(dāng)a=0時,對任意x>0,$\frac{1}{F(x)}$≤$\frac{1}{2+m[f(x)]^{2}}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn).
(Ⅰ)求P點(diǎn)的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個頂點(diǎn)都在曲線C上,且對角線EG,F(xiàn)H過原點(diǎn)O,若kEG•kFH=-$\frac{3}{4}$,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)不等式0<|x+2|-|1-x|<2的解集為M,a,b∈M
(1)證明:|a+$\frac{1}{2}$b|<$\frac{3}{4}$;
(2)比較|4ab-1|與2|b-a|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,AB=AC,∠BAC=120°,BC=4,若點(diǎn)P是邊BC上的動點(diǎn),且P到AB,AC距離分別為m,n,則$\frac{4}{m}+\frac{1}{n}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案