10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1,F(xiàn)2為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為( 。
A.4B.8C.16D.32

分析 由橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得:焦點(diǎn)F1(-1,0),F(xiàn)2(1,0),離心率為$\frac{1}{2}$.雙曲線的離心率e=2=$\frac{c}{a}$,解得a=$\frac{1}{2}$.設(shè)|PF2|=t.$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+t)^{2}}{t}$=$\frac{(1+t)^{2}}{t}$=t+$\frac{1}{t}$+2,利用基本不等式的性質(zhì)即可得出.

解答 解:由橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得:焦點(diǎn)F1(-1,0),F(xiàn)2(1,0),離心率為$\frac{1}{2}$.
∴雙曲線的離心率e=2=$\frac{c}{a}$,解得a=$\frac{1}{2}$.設(shè)|PF2|=t.
∴$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+t)^{2}}{t}$=$\frac{(1+t)^{2}}{t}$=t+$\frac{1}{t}$+2≥$2\sqrt{t•\frac{1}{t}}$+2=4,當(dāng)且僅當(dāng)t=|PF2|=1時(shí)取等號(hào).
∴$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為4.
故選:A.

點(diǎn)評(píng) 本題考查了橢圓與雙曲線的定義標(biāo)準(zhǔn)方程與幾何性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.($\frac{2}{x}$+x+1)(1-2$\sqrt{x}$+x)4的展開(kāi)式中x的系數(shù)是169(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來(lái)一段時(shí)期內(nèi),成為商業(yè)的一個(gè)主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從2017年1月起開(kāi)展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個(gè)月運(yùn)營(yíng)發(fā)現(xiàn),產(chǎn)品的月銷量x萬(wàn)件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用t萬(wàn)元之間滿足x=3-$\frac{2}{t+1}$函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為3萬(wàn)元,產(chǎn)品每1萬(wàn)件進(jìn)貨價(jià)格為32萬(wàn)元,若每件產(chǎn)品的售價(jià)定為“進(jìn)貨價(jià)的150%”與“平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,則該公司最大月利潤(rùn)是37.5萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知平面向量$\overrightarrow{a}$=(-2,5),$\overrightarrow$=(-$\frac{1}{2}$,-1),則2$\overrightarrow{a}$+4$\overrightarrow$與$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$的夾角等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示的多面體中,四邊形ACDF為矩形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,CE∩BD=P.
(Ⅰ)證明:BC⊥AD.
(Ⅱ)在棱AC上找一點(diǎn)Q,使得PQ∥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在(x+1)(x3+$\frac{1}{\sqrt{x}}$)n的展開(kāi)式中,各項(xiàng)系數(shù)的和為256,則x項(xiàng)的系數(shù)是7(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|2x+a|+|2x-2b|+3
(Ⅰ)若a=1,b=1,求不等式f(x)>8的解集;
(Ⅱ)當(dāng)a>0,b>0時(shí),若f(x)的最小值為5,求$\frac{1}{a}$+$\frac{1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,則該三棱柱內(nèi)切球的表面積與外接球的表面積的和為33π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=cos(ω+$\frac{π}{3}$)的圖象,則只將f(x)的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位B.向右平移$\frac{π}{4}$個(gè)單位
C.向左平移$\frac{π}{12}$個(gè)單位D.向右平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案