A. | 4 | B. | 8 | C. | 16 | D. | 32 |
分析 由橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得:焦點(diǎn)F1(-1,0),F(xiàn)2(1,0),離心率為$\frac{1}{2}$.雙曲線的離心率e=2=$\frac{c}{a}$,解得a=$\frac{1}{2}$.設(shè)|PF2|=t.$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+t)^{2}}{t}$=$\frac{(1+t)^{2}}{t}$=t+$\frac{1}{t}$+2,利用基本不等式的性質(zhì)即可得出.
解答 解:由橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得:焦點(diǎn)F1(-1,0),F(xiàn)2(1,0),離心率為$\frac{1}{2}$.
∴雙曲線的離心率e=2=$\frac{c}{a}$,解得a=$\frac{1}{2}$.設(shè)|PF2|=t.
∴$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+t)^{2}}{t}$=$\frac{(1+t)^{2}}{t}$=t+$\frac{1}{t}$+2≥$2\sqrt{t•\frac{1}{t}}$+2=4,當(dāng)且僅當(dāng)t=|PF2|=1時(shí)取等號(hào).
∴$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為4.
故選:A.
點(diǎn)評(píng) 本題考查了橢圓與雙曲線的定義標(biāo)準(zhǔn)方程與幾何性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$個(gè)單位 | B. | 向右平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com