分析 當(dāng)a≥1時,利用函數(shù)單調(diào)性的定義,即:在區(qū)間[0,+∞)上任取x1,x2,使得x1<x2,證明f(x1)-f(x2)>0,從而證明函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù).
解答 證明:在區(qū)間[0,+∞)上任取x1,x2,
使得x1<x2,f(x1)-f(x2)=$\sqrt{{{x}_{1}}^{2}+1}$-$\sqrt{{{x}_{2}}^{2}+1}$-a(x1-x2)
=(x1-x2)($\frac{{{x}_{1}+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$-a),
∵$\frac{{{x}_{1}+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$<1,且a≥1,
∴$\frac{{{x}_{1}+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$-a<0,
又x1-x2<0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
所以,當(dāng)a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)遞減函數(shù).
點評 本小題主要考查不等式的解法、函數(shù)的單調(diào)性等基本知識,分類討論的數(shù)學(xué)思想方法和運算、推理能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰直角三角形 | B. | 鈍角三角形 | C. | 等邊三角形 | D. | 直角三角形, |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com