4.f(x)=$\frac{{x}^{{n}^{2}}}{{x}^{3n}}$(n∈Z)是偶函數(shù),且y=f(x)在(0,+∞)上是減函數(shù),則n=1或2.

分析 從單調(diào)性入手,則指數(shù)小于零,確定出n的范圍,然后再通過偶函數(shù)驗(yàn)證得到n值.

解答 解:∵y=f(x)在(0,+∞)上是減函數(shù),
∴n2-3n<0,
∴0<n<3,
又∵是偶函數(shù),
∴n=1或2.
故答案為:1或2.

點(diǎn)評(píng) 本題主要考查冪函數(shù)的單調(diào)性和奇偶性,單調(diào)性要充分利用好在第一象限內(nèi)指數(shù)大于零為增函數(shù),小于零為減函數(shù),對(duì)稱區(qū)間上的單調(diào)性用奇偶性來判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=$\frac{1+i}{1-i}$,則z$\overline{z}$=( 。
A.1+iB.1-iC.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線C:y2=4x與點(diǎn)M(0,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則k=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)變量x、y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=x2+y2的最大值為( 。
A.9B.36C.81D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)定義在區(qū)間[-m,m]上的函數(shù)f(x)=log2$\frac{1+nx}{1-2x}$是奇函數(shù)(n≠-2),則nm的范圍為(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|x2-3x<0},N={x|1≤x≤4},則M∩N=(  )
A.[1,3)B.(1,3)C.(0,3]D.(-∞,-5]∪[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足an=an+1-3,(n∈N*),a3=5.各項(xiàng)都為正數(shù)的等比數(shù)列{bn}中,b1=a2,b3=a4
(1)求數(shù)列{an}的通項(xiàng)公式和前10項(xiàng)和S10
(2)若m=b2b3b4b5b6b7,試求m的值及數(shù)列{bn}的前n項(xiàng)和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=kx($\frac{1}{e}$≤x≤e2),與函數(shù)g(x)=($\frac{1}{e}$)${\;}^{\frac{x}{2}}}$,若f(x)與g(x)的圖象上分別存在點(diǎn)M,N,使得MN關(guān)于直線y=x對(duì)稱,則實(shí)數(shù)k的取值范圍是( 。
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.$(-\frac{2}{e},2e)$D.$[-\frac{3}{e},3e]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中真命題的個(gè)數(shù)是(  )
①若p∧q是假命題,則p,q都是假命題;
②命題“?x∈R,x3-x2+1≤0”的否定是“$?{x_0}∈R,{x_0}^3-{x_0}^2+1>0$”;
③若$p:x≤1\;,\;q:\frac{1}{x}<1$,則¬p是q的充分不必要條件.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案