分析 (1)根據(jù)函數(shù)單調(diào)性的定義證明即可;(2)分別求出f(x)和g(x)的最大值,求出F(x)的最大值即可.
解答 解:(1)函數(shù)g(x)在(-2,+∞)上是減函數(shù),
證明如下:
設(shè)-2<x1<x2,
∵g(x)=a+$\frac{1-2a}{x+2}$,
∴g(x2)-g(x1)
=(a+$\frac{1-2a}{{x}_{2}+2}$ )-(a+$\frac{1-2a}{{x}_{1}+2}$)
=(1-2a)•$\frac{{{x}_{1}-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$,
∵-2<x1<x2,
∴$\frac{{{x}_{1}-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$<0,
∵a<$\frac{1}{2}$,∴g(x2)<g(x1),
∴a<$\frac{1}{2}$時(shí),g(x)在(-2,+∞)遞減;
f(x)min=f(-3)=-6,且f(x)是奇函數(shù),
∴f(3)=6,即f(x)在區(qū)間[3,7]上的最大值是6,
由(1)得:g(x)在[3,7]上也是減函數(shù),
∴F(x)max=f(3)+g(3)=6+$\frac{3a+1}{3+2}$=$\frac{3a+31}{5}$.
點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性的證明,考查函數(shù)的單調(diào)性、最值問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$ | B. | $[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$ | ||
C. | $[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$ | D. | $[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | B. | -$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | C. | -$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$ | D. | $\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2π | |
B. | 函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{7π}{12}$,0)對(duì)稱 | |
C. | 函數(shù)f(x)在[$\frac{3π}{4}$,π]上單調(diào)遞增 | |
D. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{7π}{12}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com