分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的奇偶性求出b的值即可;
(2)根據(jù)?x∈(-2,2),ex>kx恒成立,得到關(guān)于k的不等式,記h(x)=$\frac{{e}^{x}}{x}$,x∈(-2,0)∪(0,2),根據(jù)函數(shù)的單調(diào)性求出k的范圍即可.
解答 解:(1)∵f'(x)=3ae3ax,∴f′(1)=3ae3a=e,∴a=$\frac{1}{3}$,
∵g(x)=kx+b(k,b∈R,k≠0)為奇函數(shù),∴b=0.
(2)由(1)知f(x)=ex,g(x)=kx.
∵當(dāng)x∈(-2,2)時(shí),圖象C恒在l的上方,∴?x∈(-2,2),ex>kx恒成立,
當(dāng)x=0時(shí),e0=1>0×k顯然可以,
記h(x)=$\frac{{e}^{x}}{x}$,x∈(-2,0)∪(0,2),則h′(x)=$\frac{x-1}{{x}^{2}}{e}^{x}$,由h'(x)>0⇒x∈(1,2),
∴h(x)在(-2,0)上單調(diào)減,在(0,1]上單調(diào)減,在[1,2)上單調(diào)增,
∵$\left\{\begin{array}{l}{k<\frac{{e}^{x}}{x},x∈(0,2)}\\{k>\frac{{e}^{x}}{x},x∈(-2,0)}\end{array}\right.$,x=-2,$\frac{{e}^{x}}{x}$=-$\frac{1}{2{e}^{2}}$,
∴k∈[-$\frac{1}{2{e}^{2}}$,e),
∵k≠0,∴所求實(shí)數(shù)k的取值范圍是[-$\frac{1}{2{e}^{2}}$,0)∪(0,e).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值、奇偶性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想、換元思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ②④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com