5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,若直線AF與圓O:${x^2}+{y^2}=\frac{{3{a^2}}}{16}$相切,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$

分析 求得直線AF的方程,利用點(diǎn)到直線的距離公式,利用橢圓離心率公式,即可求得橢圓的離心率.

解答 解:直線AF的方程為$\frac{x}{c}+\frac{y}=1$,即bx+cy-bc=0,
圓心O到直線AF的距離$d=\frac{{|{-bc}|}}{{\sqrt{{b^2}+{c^2}}}}=\frac{bc}{a}=\frac{{\sqrt{3}}}{4}a$,
兩邊平方整理得,16(a2-c2)c2=3a4,
于是16(1-e2)e2=3,解得${e^2}=\frac{1}{4}$或${e^2}=\frac{3}{4}$.
則e=$\frac{1}{2}$或e=$\frac{\sqrt{3}}{2}$,
故選:D.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2
(Ⅰ)記$F(x)=\frac{f(x)}{g(x)}$,討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定積分${∫}_{-1}^{1}$[xcosx+(x+1)ex]dx的值為e+e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且關(guān)于x的方程x2-anx-an=0有一根為Sn-1.
(1)求出S1,S2,S3;
(2)猜想{Sn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線且l:mx+y+3m-$\sqrt{3}$=0與圓x2+y2=12交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線與x軸交于C,D兩點(diǎn),若|AB|=2$\sqrt{3}$,則|CD|=(  )
A.4B.6C.2$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\frac{1-tanα}{1+tanα}$=2+$\sqrt{3}$,則tan($\frac{π}{4}$+α)等于(  )
A.2+$\sqrt{3}$B.1C.2-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=$\sqrt{3}$,∠ABC=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)求二面角A-A1C-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列四種說(shuō)法:
①函數(shù)$y=-\frac{1}{x}$在R上單調(diào)遞增;
②若函數(shù)y=x2+2ax+1在(-∞,-1]上單調(diào)遞減,則a≤1;
③若log0.7(2m)<log0.7(m-1),則m>-1;
④若f(x)是定義在R上的奇函數(shù),則f(1-x)+f(x-1)=0.
其中正確的序號(hào)是( 。
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知角θ的頂點(diǎn)是直角坐標(biāo)系的原點(diǎn),始邊與x軸的非負(fù)半軸重合,角θ的終邊上有一點(diǎn)P(-5,12).
(1)求sinθ,cosθ的值;
(2)求$\frac{{2sin(\frac{π}{2}+θ)+sin(2017π-θ)}}{{2cos(\frac{π}{2}-θ)-cos(2017π+θ)}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案