18.若復數(shù)z=(2-ai)(1+i)的實部為1,則實數(shù)a的值為( 。
A.1B.-1C.3D.-3

分析 直接利用復數(shù)代數(shù)形式的乘法運算展開,再由實部為1求得a值.

解答 解:∵z=(2-ai)(1+i)=2+a+(2-a)i,
∴由題意可得,2+a=1,即a=-1.
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.某幾何體的三視圖如圖,則幾何體的體積為( 。
A.8π-16B.8π+16C.16π-8D.8π+8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若曲線y=ln(x+a)的一條切線為y=ex+b,其中a,b為正實數(shù),則a+$\frac{e}{b+2}$的取值范圍是( 。
A.$({\frac{2}{e}+\frac{e}{2},+∞})$B.[e,+∞)C.[2,+∞)D.[2,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知數(shù)列{an}是各項均為正值的等比數(shù)列,且a4a12+a3a5=15,a4a8=5,則a4+a8=(  )
A.15B.$\sqrt{5}$C.5D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)證明:若實數(shù)a,b,c成等比數(shù)列,n為正整數(shù),則an,bn,cn也成等比數(shù)列;
(2)設z1,z2均為復數(shù),若z1=1+i,z2=2-i,則$|{{z_1}•{z_2}}|=\sqrt{2}×\sqrt{5}=\sqrt{10}$;若z1=3-4i,z2=4+3i,則|z1•z2|=5×5=25;若${z_1}=\frac{1}{2}-\frac{{\sqrt{3}}}{2}$,${z_2}=-\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$,則|z1•z2|=1×1=1.通過這三個小結論,請歸納出一個結論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.對任意實數(shù)a,b定義運算“⊙”:a⊙$b=\left\{\begin{array}{l}{a,a-b≤2}\\{b,a-b>2}\end{array}\right.$,設f(x)=3x+1⊙(1-x),若函數(shù)f(x)與函數(shù)g(x)=x2-6x在區(qū)間(m,m+1)上均為減函數(shù),則實數(shù)m的取值范圍是(  )
A.[-1,2]B.(0,3]C.[0,2]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax-lnx,函數(shù)g(x)=$\frac{1}{3}b{x}^{3}$-bx,a∈R,b∈R且b≠0.
(1)討論函數(shù)f(x)的單調性;
(2)若a=1,且對任意的x1(1,2),總存在x2∈(1,2),使f(x1)+g(x2)=0成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標是ρ=2asinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+a}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點,N是圓C上一動點,求|MN|的最大值;
(2)若直線l被圓C截得的弦長為$2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等差數(shù)列{an}滿足a1+a2=5,a2+a3=7,則a2016=( 。
A.2016B.2017C.2018D.2019

查看答案和解析>>

同步練習冊答案