分析 (1)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+a}\\{y=\frac{4}{5}t}\end{array}\right.$,a=2時,化為普通方程:$y=-\frac{4}{3}$(x-2).可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,利用互化公式可得直角坐標(biāo)方程,求出|MC|=2$\sqrt{2}$,可得|MN|的最大值為2$\sqrt{2}$+r.
(2)圓C的方程為:x2+(y-a)2=a2,直線l的方程為:4x+3y-4a=0,利用點(diǎn)到直線的距離公式與弦長公式即可得出.
解答 解:(1)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+a}\\{y=\frac{4}{5}t}\end{array}\right.$,a=2時,化為普通方程:$y=-\frac{4}{3}$(x-2).令y=0,解得x=2,可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,可得直角坐標(biāo)方程:x2+y2-4y=0,即x2+(y-2)2=4.
|MC|=2$\sqrt{2}$,∴|MN|的最大值為2$\sqrt{2}$+2.
(2)圓C的方程為:x2+(y-a)2=a2,直線l的方程為:4x+3y-4a=0,
圓心C到直線l的距離d=$\frac{|3a-4a|}{5}$=$\frac{|a|}{5}$.
∴$2\sqrt{{a}^{2}-\frac{{a}^{2}}{25}}$=2$\sqrt{6}$,解得a=$±\frac{5}{2}$.
點(diǎn)評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、弦長公式,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{3}{2},6$) | B. | ($\frac{3}{2},2$) | C. | (1,6) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | [1,4] | C. | ($\frac{1}{3}$,4] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{64\sqrt{3}}}{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $\frac{{32\sqrt{3}}}{3}$ | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-3x+2 | B. | y=$\frac{3}{x}$ | C. | y=x2-4x+5 | D. | y=3x2+8x-10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com