18.在直角坐標(biāo)系xOy中,直線C1:$y=-\sqrt{3}x$,曲線C2的參數(shù)方程是$\left\{\begin{array}{l}x=-\sqrt{3}+cosφ\\ y=-2+sinφ\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1的極坐標(biāo)方程和C2的普通方程;
(Ⅱ)把C1繞坐標(biāo)原點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)$\frac{π}{3}$得到直線C3,C3與C2交于A,B兩點(diǎn),求|AB|.

分析 (Ⅰ)利用ρsinθ=y,ρcosθ=x化簡可得C1的極坐標(biāo)方程;根據(jù)同角三角函數(shù)關(guān)系式,消去參數(shù),可得C2直角坐標(biāo)方程.
(Ⅱ)由題意可得C3:$θ=\frac{π}{3}(ρ∈R)$,即$y=\sqrt{3}x$,再根據(jù)點(diǎn)到直線的距離公式和直角三角形即可求出.

解答 解:(Ⅰ)直線C1:$ρsinθ=-\sqrt{3}ρcosθ⇒θ=\frac{2π}{3}(ρ∈R)$,
曲線C2的普通方程為${(x+\sqrt{3})^2}+{(y+2)^2}=1$.
(Ⅱ)C3:$θ=\frac{π}{3}(ρ∈R)$,即$y=\sqrt{3}x$.
圓C2的圓心到直線C3的距離$d=\frac{{|{-3+2}|}}{2}=\frac{1}{2}$.
所以$|{AB}|=2\sqrt{{1^2}-\frac{1}{4}}=\sqrt{3}$.

點(diǎn)評 本題考查了極坐標(biāo)方程、參數(shù)方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)=sinωx(ω>0)的圖象與x軸的兩個(gè)相鄰交點(diǎn)的距離等于$\frac{π}{2}$,若將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到函數(shù)y=g(x)的圖象,則使y=g(x)是減函數(shù)的區(qū)間為( 。
A.$({\frac{π}{4},\frac{π}{3}})$B.$({-\frac{π}{4},\frac{π}{4}})$C.$({0,\frac{π}{3}})$D.$({-\frac{π}{3},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).若數(shù)列{bn}滿足:4${\;}^{{b_1}-1}}$•4${\;}^{{b_2}-1}}$•…4${\;}^{{b_n}-1}}$=(an+1)bn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓Γ的中心在原點(diǎn),焦點(diǎn)在x軸,離心率為$\frac{{\sqrt{2}}}{2}$,且長軸長是短軸長的$\sqrt{2}$倍.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)設(shè)P(2,0)過橢圓Γ左焦點(diǎn)F的直線l交Γ于A,B兩點(diǎn),若對滿足條件的任意直線l,不等式$\overrightarrow{PA}•\overrightarrow{PB}≤λ({λ∈R})$恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,它的兩個(gè)頂點(diǎn)是線段F1F2的三等分點(diǎn),過焦點(diǎn)F1且垂直于x軸的直線交雙曲線于A,B兩點(diǎn),|AB|=16,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)?x?表示不小于實(shí)數(shù)x的最小整數(shù),如?2.6?=3,?-3.5?=-3.已知函數(shù)f(x)=?x?2-2?x?,若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個(gè)零點(diǎn),則k的取值范圍是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$({-\frac{4}{3},-1}]∪[5,10)$C.$[{-1,-\frac{2}{3}})∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知n為正整數(shù),數(shù)列{an}滿足an>0,4(n+1)an2-nan+12=0,設(shè)數(shù)列{bn}滿足bn=$\frac{{{a}_{n}}^{2}}{{t}^{n}}$
(1)求證:數(shù)列{$\frac{{a}_{n}}{\sqrt{n}}$}為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值:
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn,對任意的n∈N*,均存在m∈N*,使得8a12Sn-a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=|lgx|,若f(a)=f(b),其中0<a<b,則a+b取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.《九章算術(shù)》是我國數(shù)學(xué)史上堪與歐幾里得《幾何原本》相媲美的數(shù)學(xué)名著.其中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個(gè)面都為直角三角形的四面體稱之為鱉膈.已知直三棱柱A1B1C1-ABC中,AB⊥BC,AB=3,$BC=4,A{A_1}=5\sqrt{3}$,將直三棱柱沿一條棱和兩個(gè)面的對角線分割為一個(gè)陽馬和一個(gè)鱉膈,則鱉膈的體積與其外接球的體積之比為( 。
A.$\sqrt{3}:15π$B.$3\sqrt{3}:5π$C.$3\sqrt{3}:50π$D.$3\sqrt{3}:25π$

查看答案和解析>>

同步練習(xí)冊答案