分析 先將曲線進(jìn)行化簡得到一個(gè)圓心是(0,1)的上半圓,直線y=k(x-2)+4表示過定點(diǎn)(2,4)的直線,利用直線與圓的位置關(guān)系可以求實(shí)數(shù)k的取值范圍.
解答 解:因?yàn)閥=1+$\sqrt{4-{x}^{2}}$,所以x2+(y-1)2=4,
此時(shí)表示為圓心M(0,1),半徑r=2的圓.
因?yàn)閤∈[-2,2],y=1+$\sqrt{4-{x}^{2}}$≥1,
所以表示為圓的上部分.
直線y=k(x-2)+4表示過定點(diǎn)P(2,4)的直線,
當(dāng)直線與圓相切時(shí),有圓心到直線kx-y+4-2k=0的距離d=$\frac{|3-2k|}{\sqrt{{k}^{2}+1}}$=2,解得k=$\frac{5}{12}$.
當(dāng)直線經(jīng)過點(diǎn)B(-2,1)時(shí),直線PB的斜率為k=$\frac{3}{4}$.
所以要使直線與曲線有兩個(gè)不同的公共點(diǎn),則必有$\frac{5}{12}$<k≤$\frac{3}{4}$.
即實(shí)數(shù)k的取值范圍是$\frac{5}{12}$<k≤$\frac{3}{4}$.
故答案為$\frac{5}{12}$<k≤$\frac{3}{4}$.
點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系的應(yīng)用以及直線的斜率和距離公式.利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.同時(shí)要注意曲線化簡之后是個(gè)半圓,而不是整圓,這點(diǎn)要注意,防止出錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com