精英家教網 > 高中數學 > 題目詳情
9.若函數f(x)=x2,則f′(1)=2.

分析 根據函數的導數公式進行求解即可.

解答 解:函數的導數f′(x)=2x,
則f′(1)=2,
故答案為:2

點評 本題主要考查函數的導數的計算,根據函數的導數公式是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知tanA=$\frac{2sinC}{1-2cosC}$,b=1.
(1)求a的值(2)若c=$\sqrt{7}$,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.若$α,β∈({-\frac{π}{2},\frac{π}{2}})$,且tanα,tanβ是方程${x^2}+4\sqrt{3}x+5=0$的兩個根,則α+β等于( 。
A.$\frac{π}{3}$或$\frac{4π}{3}$B.$\frac{π}{3}$或$-\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.在△ABC中,內角A,B,C的對邊分別為a,b,c,且2c2=2a2+2b2+ab,則△ABC的形狀是鈍角三角形.(填“直角”、“鈍角”或“銳角”等)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知曲線C的極坐標方程為ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$,則C上的點到直線x-2y-4$\sqrt{2}$=0的距離的最小值為$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.函數$f(x)=\frac{ax}{{{x^2}+1}}(a>0)$的單調遞增區(qū)間是( 。
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.如圖所示是一個幾何體的三視圖,則這個幾何體的體積為$\frac{57}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知圓C:(x+2)2+y2=5,直線l:mx-y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數m,使得圓C上有四點到直線l的距離為$\frac{{4\sqrt{5}}}{5}$?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.把二項式${(\sqrt{x}+\frac{1}{{2\root{4}{x}}})^8}$的展開式中所有的項重新排成一列,則其中有理項都互不相鄰的概率為$\frac{5}{12}$.

查看答案和解析>>

同步練習冊答案