11.已知數(shù)列{an}為等差數(shù)列,若a8=4,則數(shù)列{an}的前15項(xiàng)和S15=( 。
A.12B.32C.60D.120

分析 數(shù)列{an}的前15項(xiàng)和S15=$\frac{15}{2}$(a1+a15)=15a8,由此能求出結(jié)果.

解答 解:∵數(shù)列{an}為等差數(shù)列,a8=4,
∴數(shù)列{an}的前15項(xiàng)和:
S15=$\frac{15}{2}$(a1+a15)=15a8=15×4=60.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的前15項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}}\right.$,則Z=x2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{2-i}{1-2i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)$z=\frac{{({1-i})({4-i})}}{1+i}$的共軛復(fù)數(shù)是(  )
A.-4iB.-4C.4iD.-1+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1).求:
(1)|$\overrightarrow{a}$+3$\overrightarrow$|;
(2)當(dāng)k為何實(shí)數(shù)時(shí),k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$平行,平行時(shí)它們是同向還是反向?
(3)當(dāng)向量k$\overrightarrow{a}$-$\overrightarrow$與3$\overrightarrow{a}$-$\overrightarrow$垂直時(shí),求向量k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)G是△ABC的重心,點(diǎn)E是AG的中點(diǎn),若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BG}$•$\overrightarrow{CG}$=-1,則$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是( 。
A.-$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{13}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)i為虛數(shù)單位,(-3+4i)2=a+bi(a,b∈R),則下列判斷正確的是( 。
A.|a+bi|=5B.a+b=1C.a-b=-17D.ab=168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點(diǎn)為F1,F(xiàn)2,其中F2為拋物線C2:y2=2px(p>0)的焦點(diǎn),設(shè)C1與C2的一個(gè)交點(diǎn)為P,若|PF2|=|F1F2|,則C1的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|x<2},B={y|y=2x-1},則A∩B=( 。
A.[-1,2)B.(0,2)C.(-∞,2)D.(-1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案