3.設(shè)i為虛數(shù)單位,(-3+4i)2=a+bi(a,b∈R),則下列判斷正確的是( 。
A.|a+bi|=5B.a+b=1C.a-b=-17D.ab=168

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算展開(kāi)等式左邊,再由復(fù)數(shù)相等的條件求得a,b的值,則答案可求.

解答 解:由(-3+4i)2=9-24i-16=-7-24i=a+bi,
得a=-7,b=-24,
∴ab=168.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|y=$\sqrt{x}$},B={x|x2+x>0},則A∩B=( 。
A.{x|x>0}B.{x|x≥0}C.{x|0<x<1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.定義在R上的偶函數(shù)f(x)滿(mǎn)足:對(duì)任意的實(shí)數(shù)x都有f(-x)=f(x+2),且f(-1)=2,f(2)=-1.則f(1)+f(2)+f(3)+…+f(2017)的值為( 。
A.2017B.1010C.1008D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}為等差數(shù)列,若a8=4,則數(shù)列{an}的前15項(xiàng)和S15=( 。
A.12B.32C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,命題p:“B≠60°”,命題q:“△ABC不是等邊三角形”,那么p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知全集U=R,集合A={x|x2-2x≤0},B={y|y=sinx,x∈R},則圖中陰影部分表示的集合為( 。
A.[-1,2]B.[-1,0)∪(1,2]C.[0,1]D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,bn=-1-log2|an|,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,cn=$\frac{_{n+1}}{{T}_{n}{T}_{n+1}}$.
(1)求數(shù)列{an}的通項(xiàng)公式與數(shù)列{cn}前n項(xiàng)和An
(2)對(duì)任意正整數(shù)m、k,是否存在數(shù)列{an}中的項(xiàng)an,使得|Sm-Sk|≤32an成立?若存在,請(qǐng)求出正整數(shù)n的取值集合,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中點(diǎn),M是AD上一點(diǎn),且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,則$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是(  )
A.-$\frac{22}{9}$B.-$\frac{2}{9}$C.-$\frac{7}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)集合P={x∈N|x≤8},Q={x∈R||x-1|≤2},則P∩Q={0,1,2,3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案