14.已知函數(shù)f(x)=lnx-$\frac{a}{x}$.
(1)當(dāng)a>0時(shí),求f(x)在[e,+∞)上的最小值;
(2)若f(x)在[1,e]上的最小值為$\frac{3}{2}$,求實(shí)數(shù)a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值,得到關(guān)于a的方程,求出a的值即可;
(3)分離參數(shù)得到a>xlnx-x3在(1,+∞)上恒成立.令g(x)=xlnx-x3,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(1)∵a>0,x≥e,
∴f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$>0,f(x)在[e,+∞)遞增,
故f(x)min=f(e)=$1-\frac{a}{e}$;
(2)由題意可知,f′(x)=$\frac{1}{x}$++$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$.
①若a≥-1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為增函數(shù),
∴f(x)min=f(1)=-a=$\frac{3}{2}$,∴a=-$\frac{3}{2}$(舍去).
②若a≤-e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為減函數(shù),
∴f(x)min=f(e)=1-$\frac{a}{e}$=$\frac{3}{2}$,∴a=-$\frac{e}{2}$(舍去).
③若-e<a<-1,令f′(x)=0得x=-a,
當(dāng)1<x<-a時(shí),f′(x)<0,
∴f(x)在(1,-a)上為減函數(shù);
當(dāng)-a<x<e時(shí),f′(x)>0,
∴f(x)在(-a,e)上為增函數(shù),
∴f(x)min=f(-a)=ln(-a)+1=$\frac{3}{2}$,
∴a=-$\sqrt{e}$.綜上所述,a=-$\sqrt{e}$;
(3)∵f(x)<x2,∴a>xlnx-x3在(1,+∞)上恒成立.
令g(x)=xlnx-x3,h(x)=g′(x)=1+ln x-3x2,
h′(x)=$\frac{1}{x}$-6x=$\frac{1-{6x}^{2}}{x}$.
∵x∈(1,+∞)時(shí),h′(x)<0,
∴h(x)在(1,+∞)上是減函數(shù).
∴h(x)<h(1)=-2<0,即g′(x)<0,
∴g(x)在(1,+∞)上也是減函數(shù).
∴g(x)<g(1)=-1,
當(dāng)a≥-1時(shí),f(x)<x2在(1,+∞)上恒成立.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在等差數(shù)列{an}中,如果a3=4,則a1a5的最大值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,則實(shí)數(shù)a的最小值為$\frac{55}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(Ⅰ)求出f(5)的值;
(Ⅱ)利用合情推理的“歸納推理思想”,歸納出f(n)與f(n-1)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-cos(2ωx+π),其中ω>0.
(1)當(dāng)ω=1時(shí),求函數(shù)y=f(x)的值域;
(2)若f(x)在區(qū)間[-$\frac{3π}{2}$,$\frac{π}{2}$]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體是組合體,其三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{16}{3}$+8πB.$\frac{32}{3}$+8πC.16+8πD.$\frac{16}{3}$+16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.運(yùn)行如圖程序框圖,若對(duì)任意輸入的實(shí)數(shù)x,有f(x)≥a成立,且存在實(shí)數(shù)x0,使得f(x0)=a成立,則實(shí)數(shù)a的值為(  )
A.-4B.0C.4D.-4或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=$\sqrt{7}$,
(1)求角C
(2)求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案